A. Rivera et al. / Tetrahedron Letters 53 (2012) 6132–6135
6135
Figure 5. Non-conventional hydrogen bonds linking the pair of enantiomers in the crystal lattice.
13. Hammam, E.; Lee, E. P. F.; Dyke, J. M. J. Phys. Chem. A 2000, 104, 4571.
14. Norris, C. B.; Joseph, P. R.; Mackiewicz, M. R.; Reed, S. M. Chem. Mater. 2010, 22,
3637–3645.
twisted conformation on C2—C3, (Q(2) = 0.3721 (17) Å,
u = 126.8
(3)°),20 whereas a related structure has a twist conformation on
C—N.21 This finding could indicate that the conformational change
of the ethylene bridge is a consequence of methyl substitution on
the heterocyclic ring. Additionally, it was determined that com-
pound 7 crystallized as a racemic mixture, which unequivocally
proves that the configuration of aminal cage 4c is (4R,9S). In the
crystal lattice, a pair of enantiomers was bonded together by
non-classical intermolecular interactions C—Hꢁ ꢁ ꢁCl between H16
and Cl2 (Fig. 5). The crystal structure of 7 confirms the presence
of two intramolecular hydrogen bond interactions. However, no
significant differences in the values observed in a related structure
are observed.
15. Reaction of rac-1,2-propanediamine with paraformaldehyde: Paraformaldehyde
(1026 mg, 34.2 mmol) was added in small portions to a solution of rac-1,2-
propanediamine (1 mL, 11.4 mmol) in water (20.0 mL) with vigorous stirring
for 10 min, at 60 °C. The reaction mixture was stirred for 4 h, and the product
was extracted with CHCl3 (4 ꢂ 5 mL). The organic layer was dried over
anhydrous sodium sulfate and filtered, and the solvent was evaporated under
reduced pressure. The crude product was purified by column chromatography
on silica gel and eluted with methanol–25% NH4OH (8:2) mixture to afford
(4R,9S)-4,9-dimethyl-1,3,6,8-tetraazatricyclo[4.4.1.13,8]dodecane
4c
(54%
yield) as a viscous liquid: 1H NMR (400.1 MHz, CDCl3): d 1.02 (d, 3H), 1.03
(d, 3H), 2.63 (m, 2H), 3.33 (m, 2H), 3.44 (m, 2H), 3.71–4.13 (m, 8H). 13C NMR
(100.6 MHz, CDCl3): d 19.15, 19.25, 61.86, 62.23, 64.97, 65.37, 67.67, 67.82,
72.98, 73.13. HR-ESI-MS in its positive mode m/z: [M+H]+ calcd for C10H21N4:
197.1761, found: 197.1733.
16. Rivera, A.; Núñez, M. E.; Morales-Rios, M. S.; Joseph-Nathan, P. Tetrahedron Lett.
2004, 45, 7563–7565.
17. Shibuya, M.; Taniguchi, T.; Takahashi, M.; Ogasawara, K. Tetrahedron Lett. 2002,
43, 4145–4147.
The synthesis of this new bisbenzylimidazolidine derivative
represents an expansion of our previous work regarding the use
of cyclic aminals as preformed electrophiles in Mannich condensa-
tions to prepare new ligands with imidazolidinic cores and poten-
tial uses in homogeneous catalysis.22–24
18. Geivandov, R. Ch.; Goncharova, I. V.; Titov, V. V. Mol. Cryst. Liq. Cryst. 1989, 166,
101–103.
19. Synthesis
of
2,20-[(4-methylimidazolidine-1,3-diyl)dimethane-diyl]bis(4-
In summary, we report the first synthesis of the cyclic aminal
4,9-dimethyl-1,3,6,8-tetraazatricyclo[4.4.1.13,8]dodecane
(DMTATD, 4c). We probed its existence through an ortho-ami-
nomethylation reaction to form the di-Mannich base 7. This finding
could be exploited to produce a range of unprecedented chiral
salans.
chlorophenol) 7: A solution of p-chlorophenol (182 mg, 1,4 mmol) in ethanol
(1 mL) was added dropwise into a solution of (4R,9S)-4,9-dimethyl-1,3,6,8-
tetraazatricyclo[4.4.1.13,8]dode-cane 4c (140 mg, 0.7 mmol) in water (1 mL).
The mixture was stirred for 4 days at 50 °C. The resulting product was purified
by column chromatography on silica gel using gradient elution with benzene/
ethyl acetate to afford the product 7 (mp 117.5–118 °C, 39 % yield): 1H NMR
(400.1 MHz, CDCl3): d 1.26 (d, 3J = 6.2 Hz, 3H), 2.43 (dd, 2Jgem = 10.0, 3J = 7.8 Hz,
1H), 3.10–2.92 (m, 1H), 3.25 (dd, 2Jgem = 9.9, 3J = 7.0 Hz, 1H), 3.42 (d, 3J = 7.1 Hz,
2
1H), 3.58 (d, Jgem = 14.0 Hz, 1H), 3.63 (d, 3J = 7.2 Hz, 1H), 3.77 (d,
2
2
2Jgem = 13.8 Hz, 1H), 3.84 (d, Jgem = 13.8 Hz, 1H), 4.11 (d, Jgem = 13.9 Hz, 1H),
6.77 (d, 3J = 8.7 Hz, 2H), 6.95 (dd, 3J = 6.6, 4J = 2.5 Hz, 2H), 7.13 (dd, 3J = 8.7,
4J = 2.0 Hz 2H). 13C NMR (100.6 MHz, CDCl3): d 18.57, 29.85, 56.64, 57.72,
59.48, 59.64, 74.90, 116.81, 117.75, 117.81, 122.65, 123.07, 124.07, 124.10,
Acknowledgments
We acknowledge the Dirección de Investigaciones, Sede Bogotá
(DIB) de la Universidad Nacional de Colombia and Fundación para
la Promoción de la Investigación y la Tecnología del Banco de la
República for the financial support of this work, as well as the Insti-
tutional research plan No. AVOZ10100521 of the Institute of Phys-
ics and the Praemium Academiae project of the Academy of
Sciences of the Czech Republic.
128.11, 128.11, 129.13, 129.62, 156.20, 156.26. FT-IR (KBr) (m
, cmꢀ1): 3300–
2200 (O–H, broad, st), 2956 (CH3 asym, st), 2924 (CH2 asym, st), 2865 (CH3
sym, st), 2851 (CH2 sym, st), 1607(–C@C, st), 1308 (C–N, st), 643 (C–Cl, st); HR-
ESI-MS in its positive mode m/z: [M+H]+ calcd for C18H21Cl2N2O2: 367.0981,
found: 367.0971.
20. Crystal data for compound 7, C18H20Cl2N2O2, were collected using a goniometer
Xcalibur detector: Atlas (Gemini ultra Cu) diffractometer, M = 367.3, monoclinic,
P21/c, a = 18.3098(7) Å, b = 6.0252(3) Å, c = 16.1039(8) Å, V = 1758.01(14) Å3,
Z = 4, X-ray source Cu Ka (radiation), k = 1.54180 Å, F(0 00) = 768, colorless
prism 0.26 ꢂ 0.13 ꢂ 0.07 mm. The refinement was carried out against all
reflections. The conventional R-factor is always based on F. The goodness of fit
as well as the weighted R-factor are based on F and F2 for refinement carried
References and notes
1. Chusuei, C. C.; Morris, R. E.; Schreifels, J. A. Ind. Eng. Chem. Res. 1998, 37, 3610–
3617.
out on
F
and F2, respectively. The threshold expression is used only for
calculating R-factors etc. and it is not relevant to the choice of reflections for
refinement. Crystallographic data (excluding structure factors) for the given
structure in this Letter have been deposited with the Cambridge
Crystallographic Data Centre as supplementary publication number CCDC
894271. Copies of these data can be obtained, free of charge, on application to
CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44 (0)1223 336033 or
email: deposit@ccdc.cam.ac.uk).
2. Chattopadhyay, S.; Drew, M. G. B.; Ghosh, A. Polyhedron 2007, 26, 3513–3522.
3. Sujatha, S.; Balasubramanian, S.; Varghese, B. Polyhedron 2009, 28, 3723–3730.
4. Rivera, A.; Quiroga, D.; Jiménez-Cruz, L.; Fejfarová, K.; Dušek, M. Tetrahedron
Lett. 2012, 53, 345–348.
5. Rivera, A.; Quevedo, R.; Maldonado, M.; Navarro, M. A. Synth. Commun. 2004,
34, 2479–2485.
6. Rivera, A.; Gallo, G. I.; Gayón, M. E.; Joseph-Nathan, P. Synth. Commun. 1993, 23,
2921–2929.
7. Danilova, T. I.; Rozenberg, V. I.; Vorontsov, E. V.; Starikova, Z. A.; Hopf, H.
Tetrahedron: Asymmetry 2003, 14, 1375–1383.
8. Jacobsen, E. N.; Yoon, T. P. Science 2003, 299, 1691–1693.
9. Atwood, D. A. Coord. Chem. Rev. 1997, 165, 267–296.
10. Hocker, J.; Wendish, D. J. J. Chem. Res., Synop. 1977, 236.
11. Peori, M. B.; Vaughan, K.; Hooper, D. L. J. Org. Chem. 1998, 63, 7437–7444.
12. Murray-Rust, P.; Riddell, F. G. Can. J. Chem. 1975, 53, 1933–1935.
21. Rivera, A.; Sadat-Bernal, J.; Rios-Motta, J.; Pojarova, M.; Dusek, M. Acta
Crystallogr., Sect. E 2011, 67, o2581.
22. Zhang, Z.; Xu, X.; Li, W.; Yao, Y.; Zhang, Y.; Shen, Q.; Luo, Y. Inorg. Chem. 2009,
48, 5715–5724.
23. Song, F.; Yan, C.; Sun, H.; Yao, Y.; Shen, Q.; Zhang, Y. Chin. Sci. Bull. 2009, 54,
3231–3236.
24. Bera, M.; Nanda, P.; Mukhopadhyay, U.; Ray, D. J. Chem. Sci. 2004, 116, 151–
158.