K. Venkatachalam et al. / Catalysis Communications 12 (2010) 299–303
303
Scheme 1. Possible pathway for the formation of hemiacetal, acetal and vinyl ether.
3.6.4. Effect of catalyst loading
References
The effect of catalyst loading on n-heptanal conversion and the
products' selectivity was studied and the results are presented in
Fig. 5c. The optimum catalyst loading was found to be 0.05 g. Since the
feed ratio was 1:3, methanol content around the active site need
not be the same with an increase in the catalyst amount and hence
conversion decreased at higher loading. The selectivity of hemiacetal
clearly demonstrates the existence of unequal distribution of
methanol close to acid sites. The selectivity of acetal increased from
0.03 to 0.05 g of the catalyst but decreased at higher loading.
[1] L.F. Tietze, Chem. Rev. 96 (1996) 115–136.
[2] T.W. Green, P.G.M. Wuts, 2nd ed., Protective Groups on Organic Synthesis, vol. 4,
Wiley, New York, 1991, p. 212.
[3] M.J. Climent, A. Velty, A. Corma, Green Chem. 4 (2002) 565–569.
[4] K. Bauer, D. Garbe, H. Surburg, Common Fragrances and Flavour Materials, 2nd ed.
VCH, New York, 1990.
[5] D.M. Clode, Chem. Rev. 79 (1979) 491–513.
[6] S.V. Ley, H.W.M. Priepke, Angew. Chem. 106 (1994) 2412–2414.
[7] M.K. Cheung, N.L. Douglas, B. Hinzen, S.V. Ley, X. Pannecoucke, Synlett, 1997,
pp. 257–260.
[8] K. Narasaka, M. Inone, T. Yamada, J. Sugiomori, N. Iwasawa, Chem. Lett. (1987)
2409–2412.
[9] J.R. Bull, J. Floor, G.J. Kruger, J. Chem. Res. Synop. (1979) 224.
[10] K. Bruns, J. Conard, A. Steigel, Tetrahedron 35 (1979) 2523–2530.
[11] A.J. Elliot (Ed.), 1,3-Dioxalane Polymers in Comprehensive Heterocyclic Polymers,
6, Pergamon Press, Oxford, UK, 1984.
[12] C.A. Mcckinzie, J.H. Stocker, J. Org. Chem. 20 (1955) 1695–1701.
[13] J. Bornstein, S.F. Bedell, P.E. Drummond, C.F. Kosoloski, J. Am. Chem. Soc. 78 (1956)
83–86.
[14] C.H. Lin, S.D. Lin, Y.H. Yang, T.P. Lin, Catal. Lett. 73 (2001) 2–4.
[15] J.I. Tateiwa, H. Horiochi, S. Uemora, J. Org. Chem. 60 (1995) 4039–4043.
[16] F. Algarre, A. Corma, H. Garcia, J. Primo, Appl. Catal., A 128 (1995) 119–126.
[17] M.J. Climent, A. Corma, S. Iborra, M.C. Navarro, J. Primo, J. Catal. 161 (1996)
783–789.
[18] Y. Tanaka, N. Sawamara, M. Iwamoto, Tetrahedron Lett. 39 (1998) 9457–9460.
[19] B. Thomas, S. Prathapan, S. Sugunan, Micropor. Mesopor. Mater. 80 (2005) 65–72.
[20] A. Vinu, V. Murugesan, Martin Hartmann, Chem. Mater. 15 (2003) 1385–1393.
[21] Q. Huo, D.I. Margolese, U. Ciesla, D.G. Demuth, P. Feng, T.E. Gier, P. Sieger, A.
Firouzi, B.F. Chmelka, F. Schuth, G.D. Stucky, Chem. Mater. 6 (1994) 1176–1191.
[22] Q. Huo, D.I. Margolese, G.D. Stucky, Chem. Mater. 8 (1996) 1147–1160.
[23] L.X. Dai, K. Tabata, E. Suzuki, J. Mater. Sci. Lett. 19 (2000) 2071–2073.
[24] S. Che, Y. Sakamoto, H. Yoshitake, O. Terasaki, T. Tatsumi, J. Phys. Chem. B 105
(2001) 10565–10572.
4. Conclusion
This study concluded that SBA-1 catalysts exhibited similar n-
heptanal conversion irrespective of Si/Al and Si/(Al+Mg) ratios. This
conclusion elucidated that the reaction is mainly controlled by their
hydrophilic-hydrophobic property and free diffusion of reactants and
products rather the acidity of the catalysts. This study also revealed
that mesoporous materials are better than microporous materials for
acetalization of long-chain aldehydes due to free diffusion in the
mesoporous materials. This is a clean one-pot synthesis route for
acetal compared to mineral acid–catalyzed route.
Acknowledgement
The authors gratefully acknowledge the financial support from
the Council of Scientific & Industrial Research (CSIR), Government of
India, New Delhi, for this research work. One of the authors (Mr. K.
Venkatachalam) is grateful to CSIR for the award of Senior Research
Fellowship (SRF).
[25] V.V. Balasubramanian, C. Anand, R.R. Pal, T. Mori, W. Bohlmann, K. Ariga, A.K.
Tyagi, A. Vinu, Micropor. Mesopor. Mater. 121 (2009) 18–25.
[26] B. Rabindran Jermy, A. Pandurangan, J. Mol. Catal. A: Chem. 256 (2006) 184–192.