Organic Letters
Letter
dehalogenation other than an indirect pathway via Cannizzaro
reaction.
In the kinetic isotope experiments, a KIE of 2.9 for PhCHO
and 5.7 for PhCH2OH was observed (eqs 9 and 10). The
REFERENCES
■
(1) Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev. 2002, 102, 4009.
(2) (a) Sadowsky, D.; McNeill, K.; Cramer, C. J. Environ. Sci. Technol.
2014, 48, 10904. (b) Harrad, S.; Robson, M.; Hazrati, S.; Baxter-Plant,
V. S.; Deplanche, K.; Redwood, M. D.; Macaskie, L. E. J. Environ. Monit.
2007, 9, 314. (c) Mitoma, Y.; Nagashima, S.; Simion, C.; Simion, A. M.;
Yamada, T.; Mimura, K.; Ishimoto, K.; Tashiro, M. Environ. Sci. Technol.
2001, 35, 4145. (d) Hites, R. A. Acc. Chem. Res. 1990, 23, 194.
(3) (a) Zask, A.; Helquist, P. J. Org. Chem. 1978, 43, 1619. (b) Marques,
C. A.; Selva, M.; Tundo, P. J. Org. Chem. 1994, 59, 3830. (c) Maleczka, R.
E., Jr.; Rahaim, R. J., Jr.; Teixeira, R. R. Tetrahedron Lett. 2002, 43, 7087.
(d) Zawisza, A. M.; Muzart, J. Tetrahedron Lett. 2007, 48, 6738. (e) Pyo,
A.; Kim, S.; Kumar, M. R.; Byeun, A.; Eom, M. S.; Han, M. S.; Lee, S.
Tetrahedron Lett. 2013, 54, 5207. (f) Bhattacharjya, A.; Klumphu, P.;
Lipshutz, B. Org. Lett. 2015, 17, 1122. (g) Narisada, M.; Horibe, I.;
Watanabe, F.; Takeda, K. J. Org. Chem. 1989, 54, 5308. (h) Desmarets,
C.; Kuhl, S.; Schneider, R.; Fort, Y. Organometallics 2002, 21, 1554.
(i) Fujita, K.; Owaki, M.; Yamaguchi, R. Chem. Commun. 2002, 2964.
(j) Lewis, J. C.; Wiedemann, S. H.; Bergman, R. G.; Ellman, J. A. Org.
Lett. 2004, 6, 35. (k) Narayanam, J. M. R.; Tucker, J. W.; Stephenson, C.
R. J. J. Am. Chem. Soc. 2009, 131, 8756. (l) Nguyen, J. D.; D’Amato, E.
M.; Narayanam, J. M. R.; Stephenson, C. R. J. Nat. Chem. 2012, 4, 854.
(4) (a) Neumann, W. P. Synthesis 1987, 1987, 665. (b) Baguley, P. A.;
Walton, J. C. Angew. Chem., Int. Ed. 1998, 37, 3072. (c) Studer, A.;
Amrein, S. Synthesis 2002, 2002, 835. (d) Krief, A.; Laval, A.-M. Chem.
Rev. 1999, 99, 745. (e) Szostak, M.; Spain, M.; Procter, D. J. Chem. Soc.
Rev. 2013, 42, 9155.
reaction in the presence of PhCDO in DMF at 50 °C for 5 min
gives 18% of 2n-D, whereas the reaction with PhCD2OH affords
only 4.2% of 2n-D. All these KIE experiments indicate that the
C−H bond cleavage of PhCHO should be the rate-limiting step.
In conclusion, a dehalogenation of aryl halides using benzyl
alcohols or aldehydes as hydrogen sources under basic
conditions has been developed. A radical pathway via a benzoyl
radical has been established based on the experimental evidence
including kinetic study, KIE, trapping reactions, and control
reactions. The kinetic study clearly distinguishes two possible
reaction pathways and thus rules out the Cannizzaro pathway for
the dehalogenation in the presence of PhCHO, where a much
larger initial rate is established than that of PhCH2OH (Scheme
6). The solvent DMF has also participated the dehalogenation as
(5) (a) Fukuzumi, S.; Hironaka, K.; Tanaka, T. J. Am. Chem. Soc. 1983,
105, 4722. (b) Ghosh, I.; Ghosh, T.; Bardagi, J. I.; Konig, B. Science 2014,
346, 725. (c) Discekici, E. H.; Treat, N. J.; Poelma, S. O.; Mattson, K. M.;
Hudson, Z. M.; Luo, Y.; Hawker, C. J.; de Alaniz, J. R. Chem. Commun.
2015, 51, 11705.
̈
10
t
a radical initiator together with BuOK. Due to the fast
hydrogen exchange between hydrogen sources (PhCHO and
PhCH2OH) and DMF, the isotope labeling experiments cannot
be established as a rational evidence to support the source of
hydrogen, whereas other experiments such as the kinetic study
and the KIE experiments exhibit a more clear clue. For the first
time, aldehydes were directly used as hydrogen source other than
the well-established alcohol−hydrogen sources.
(6) (a) Ueno, R.; Shimizu, T.; Shirakawa, E. Synlett 2016, 27, 741.
(b) Dewanji, A.; Muck-Lichtenfeld, C.; Studer, A. Angew. Chem., Int. Ed.
̈
2016, 55, 6749.
(7) (a) Li, Q.-Q.; Xiao, Z.-F.; Yao, C.-Z.; Zheng, H.-X.; Kang, Y.-B. Org.
Lett. 2015, 17, 5328. (b) Yao, C.-Z.; Li, Q.-Q.; Wang, M.-M.; Ning, X.-S.;
Kang, Y.-B. Chem. Commun. 2015, 51, 7729. (c) Zheng, H.-X.; Xiao, Z.-
F.; Yao, C.-Z.; Li, Q.-Q.; Ning, X.-S.; Kang, Y.-B.; Tang, Y. Org. Lett.
2015, 17, 6102.
(8) Dong, Y.; Lipschutz, M. I.; Tilley, T. D. Org. Lett. 2016, 18, 1530.
(9) (a) Studer, A.; Curran, D. P. Angew. Chem., Int. Ed. 2016, 55, 58.
(b) Studer, A.; Curran, D. P. Nat. Chem. 2014, 6, 765. (c) Studer, A.;
Curran, D. P. Angew. Chem., Int. Ed. 2011, 50, 5018. (d) Bolton, R.;
Williams, G. H. Chem. Soc. Rev. 1986, 15, 261.
(10) Pichette Drapeau, M.; Fabre, I.; Grimaud, L.; Ciofini, I.; Ollevier,
T.; Taillefer, M. Angew. Chem., Int. Ed. 2015, 54, 10587.
(11) Boyle, W. J., Jr.; Bunnett, J. F. J. Am. Chem. Soc. 1974, 96, 1418.
(12) (a) Kawamoto, T.; Sato, A.; Ryu, I. Chem. - Eur. J. 2015, 21, 14764.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental details and spectroscopic data for all
AUTHOR INFORMATION
Corresponding Authors
■
(b) Masing, F.; Mardyukov, A.; Doerenkamp, C.; Eckert, H.; Malkus, U.;
̈
Nusse, H.; Klingauf, J.; Studer, A. Angew. Chem., Int. Ed. 2015, 54, 12612.
̈
ORCID
(c) Masing, F.; Wang, X.; Nusse, H.; Klingauf, J.; Studer, A. Chem. - Eur.
̈
̈
J. 2017, 23, 6014. (d) Masing, F.; Nusse, H.; Klingauf, J.; Studer, A. Org.
̈
̈
Lett. 2017, 19, 2658.
Author Contributions
§H.-X.Z. and X.-H.S. contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the National Natural Science Foundation of China
(21672196, 21404096, 21602001, U1463202) and Anhui
Provincial Natural Science Foundation (1608085MB24) for
financial support.
D
Org. Lett. XXXX, XXX, XXX−XXX