Journal of the American Chemical Society
Communication
Raton, FL, 1983; pp 5−29. (b) Horiguchi, M.; Kandatsu, M. Nature
1959, 184, 901−902. (c) Fields, S. C. Tetrahedron 1999, 55, 12237−
12273. (d) Kukhar, V. P.; Hudson, H. R., Eds. Aminophosphonic and
Aminophosphinic Acids: Chemistry and Biological Activity; Wiley: New
York, NY, 2000. (e) Palacios, F.; Alonso, C.; de Los Santos, J. M.
Chem. Rev. 2005, 105, 899−931.
(2) (a) Guiry, P. J.; Saunders, C. P. Adv. Synth. Catal. 2004, 346,
497−537. (b) Amoroso, D.; Graham, T. W.; Guo, R.; Tsang, C.-W.;
Abdur-Rashid, K. Aldrichimica Acta 2008, 41, 15−26 and references
therein.
(3) For reviews on enantioselective desymmetrization of aziridines
with various nucleophiles, see: (a) Pineschi, M. Eur. J. Org. Chem.
2006, 4979−4988. (b) Hu, X. E. Tetrahedron 2004, 60, 2701−2743.
(c) Schneider, C. Angew. Chem., Int. Ed. 2009, 48, 2082−2084.
(4) For reviews on enantioselective hydrophoshonylation, see:
(10) For N-benzoyl 9-amino-9-deoxy-epi-cinchona alkaloid catalysts,
see: (a) Taggi, A. E.; Hafez, A. M.; Wack, H.; Young, B.; Drury, W. J.,
III; Lectka, T. J. Am. Chem. Soc. 2000, 122, 7831−7832. (b) Brunner,
H.; Schmidt, P. Eur. J. Org. Chem. 2000, 2119−2133. (c) Brunner, H.;
Schmidt, P.; Prommesberger, M. Tetrahedron: Asymmetry 2000, 11,
1501−1512. (d) Taggi, A. E.; Hafez, A. M.; Wack, H.; Young, B.;
Ferraris, D.; Lectka, T. J. Am. Chem. Soc. 2002, 124, 6626−6635.
(e) Rogers, L. M.-A.; Rouden, J.; Lecomte, L.; Lasne, M.-C.
Tetrahedron Lett. 2003, 44, 3047−3050. (f) Brunner, H.; Baur, M.
A. Eur. J. Org. Chem. 2003, 2854−2862. (g) Baur, M. A.; Riahi, A.;
́
Henin, F.; Muzart, J. Tetrahedron: Asymmetry 2003, 14, 2755−2761.
(h) Seitz, T.; Baudoux, J.; Bekolo, H.; Cahard, D.; Plaquevent, J.-C.;
Lasne, M.-C.; Rouden, J. Tetrahedron 2006, 62, 6155−6165. (i) Cui,
H.-L.; Peng, J.; Feng, X.; Du, W.; Jiang, K.; Chen, Y.-C. Chem.Eur. J.
2009, 15, 1574−1577. (j) Xiong, X.-F.; Jia, Z.-J.; Du, W.; Jiang, K.; Liu,
T.-Y.; Chen, T. Y.-C. Chem. Commun. 2009, 6994−6996. (k) Zhang,
W.; Zheng, S.; Liu, N.; Werness, J. B.; Guzei, L. A.; Tang, W. J. Am.
Chem. Soc. 2010, 132, 3664−3665. (l) Rana, N. K.; Selvakumar, S.;
Singh, V. K. J. Org. Chem. 2010, 75, 2089−2091. (m) Sladojevich, F.;
Trabocchi, A.; Guarna, A.; Dixon, D. J. J. Am. Chem. Soc. 2011, 133,
1710−1713.
(a) Merino, P.; Marques
2008, 350, 1195−1208. (b) Ordon
́
-Lop
́
ez, E.; Herrera, R. P. Adv. Synth. Catal.
ez, M.; Rojas-Cabrera, H.; Cativiela,
́
̃
C. Tetrahedron 2009, 65, 17−49. (c) Zhao, D.; Wang, R. Chem. Soc.
Rev. 2012, 41, 2095−2108. For selected recent papers for
enantioselective desymmetrization of aziridines, see: (d) Nakamura,
S.; Hayashi, M.; Kamada, Y.; Sasaki, R.; Hiramatsu, Y.; Shibata, N.;
Toru, T. Tetrahedron Lett. 2010, 51, 3820−3823. (e) Xu, Y.; Lin, L.;
Kanai, M.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2011, 133,
5791−5793. (f) Ohmatsu, K.; Hamajima, Y.; Ooi, T. J. Am. Chem. Soc.
2012, 134, 8794−8797.
(11) For selected examples of chiral catalysts having a 2-picolinoyl
group, see: (a) Trost, B. M.; Hachiya, I. J. Am. Chem. Soc. 1998, 120,
1104−1105. (b) Soloshonok, V. A.; Ueki, H.; Tiwari, R.; Cai, C.;
Hruby, V. J. J. Org. Chem. 2004, 69, 4984−4990. (c) Trost, B. M.;
Zhang, Y. J. Am. Chem. Soc. 2006, 128, 4590−4591. (d) Onomura, O.;
Kouchi, Y.; Iwasaki, F.; Matsumura, Y. Tetrahedron Lett. 2006, 47,
3751−3754. (e) Zheng, H.-J.; Chen, W.-B.; Wu, Z.-J.; Deng, J.-G.; Lin,
W.-Q.; Yuan, W.-C.; Zhang, X.-M. Chem.Eur. J. 2008, 14, 9864−
9867. (f) Guizzetti, S.; Benaglia, M.; Celentano, G. Eur. J. Org. Chem.
2009, 3683−3687.
(5) For the synthesis of β-amino phosphonates through the ring-
opening reaction of aziridines with phosphites, see: (a) Duggan, M. E.;
Karanewsky, D. S. Tetrahedron Lett. 1983, 24, 2935−2938. For the
reaction of aziridines with phosphorus nucleophiles, see: (b) Katagiri,
T.; Takahashi, M.; Fujiwara, Y.; Ihara, H.; Uneyama, K. J. Org. Chem.
1999, 64, 7323−7329. (c) Caiazzo, A.; Dalili, S.; Yudin, A. K. Org. Lett.
2002, 4, 2597−2600.
1
(12) We also observed 4g-ZnEt species by H NMR analysis; see
Supporting Information.
(6) (a) Nakamura, S.; Hayashi, M.; Hiramatsu, Y.; Shibata, N.;
Funahashi, Y.; Toru, T. J. Am. Chem. Soc. 2009, 131, 18240−18241.
For related recent studies from our group, see: (b) Nakamura, S.;
Nakashima, H.; Yamamura, A.; Shibata, N.; Toru, T. Adv. Synth. Catal.
2008, 350, 1209−1212. (c) Ohara, M.; Nakamura, S.; Shibata, N. Adv.
Synth. Catal. 2011, 353, 3285−3289. (d) Hayashi, M.; Nakamura, S.
Angew. Chem., Int. Ed. 2011, 50, 2249−2252.
(13) For tridentate N-acyl 9-amino-9-deoxy-epi-cinchona alkaloids
and metal salts, see a review: (a) Stegbauer, L.; Sladojevich, F.; Dixon,
D. J. Chem. Sci. 2012, 3, 942−958. See also: (b) Casarotto, V.; Li, Z.;
Boucau, J.; Lin, Y.-M. Tetrahedron Lett. 2007, 48, 5561−5564. (c) Lin,
Y.-M.; Boucau, J.; Li, Z.; Casarotto, V.; Lin, J.; Nguyen, A. N.;
Ehrmantraut, J. Org. Lett. 2007, 9, 567−570. (d) Lin, Y.-M.; Li, Z.;
Boucau, J. Tetrahedron Lett. 2007, 48, 5275−5278. (e) Chidara, S.; Lin,
Y.-M. Synlett 2009, 1675−1679.
(14) Catalysts derived from 4i and 4j showed low reactivity and
enantioselectivity (Table 1, entries 9 and 10). We assumed that the
methoxy group in 4i and 4j enhanced the coordination ability of
nitrogen in the quinoline ring. These nitrogens would cause the
formation of a more complicated catalyst to give the product in low
yield with low enantioselectivity.
(7) For the enantioselective hydrophosphonylation of α,β-unsatu-
rated carbonyl compounds or nitroalkenes using phosphites and
Et2Zn, see: (a) Zhao, D.; Yuan, Y.; Chan, A. S. C.; Wang, R. Chem.
Eur. J. 2009, 15, 2738−2741. (b) Zhao, D.; Wang, Y.; Mao, L.; Wang,
R. Chem.Eur. J. 2009, 15, 10983−10987. For diastereoselective
addition of phosphite to nitroalkenes using Et2Zn, see: (c) Enders, D.;
Tedeschi, L.; Bats, J. W. Angew. Chem., Int. Ed. 2000, 39, 4605−4607.
For enantioselective hydrophosphonylation of aldehydes using
cinchona alkaloid−Lewis acid catalysts, see: (d) Yang, F.; Zhao, D.;
Lan, J.; Xi, P.; Yang, L.; Xiang, S.; You, J. Angew. Chem., Int. Ed. 2008,
47, 5646−5649. For enantioselective hydrophosphonylation of
aldehydes using a base, see: (e) Suyama, K.; Sakai, Y.; Matsumoto,
K.; Saito, B.; Katsuki, T. Angew. Chem., Int. Ed. 2010, 49, 797−799.
(8) The reaction without diethylzinc did not afford the product. We
also examined the reaction with various phosphites such as diethyl
phosphite, dibenzyl phosphite, and bis(2,2,2-trifluorethyl) phosphite;
however the enantioselectivity or yield was not good (see Supporting
Information).
(9) We also examined the desymmetrization of aziridines using
Trost’s dinuclear-Zn catalyst as a pioneering chiral zinc catalysts to
give the product in moderate yield with enantioselectivity (see
Supporting Information). For Trost’s dinuclear-Zn catalyst, see
selected examples: (a) Trost, B. M.; Ito, H. J. Am. Chem. Soc. 2000,
122, 12003−12004. (b) Trost, B. M.; Ito, H.; Silcoff, E. R. J. Am. Chem.
Soc. 2001, 123, 3367−3368. (c) Trost, B. M.; Silcoff, E. R.; Ito, H. Org.
Lett. 2001, 3, 2497−2500. (d) Trost, B. M.; Terrell, L. R. J. Am. Chem.
Soc. 2003, 125, 338−339. (e) Trost, B. M.; Lupton, D. W. Org. Lett.
2007, 9, 2023−2026. (f) Trost, B. M.; Hitce, J. J. Am. Chem. Soc. 2009,
131, 4572−4573.
19369
dx.doi.org/10.1021/ja309963w | J. Am. Chem. Soc. 2012, 134, 19366−19369