ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Palladium-Catalyzed Carbonylative
Cyclization/Arylation Cascade for
2‑Aroylindolizine Synthesis
Zhou Li, Dmitri Chernyak, and Vladimir Gevorgyan*
Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street,
Chicago, Illinois 60607-7061, United States
Received October 25, 2012
ABSTRACT
An efficient synthesis of densely substituted 2-aroylindolizines via the palladium-catalyzed carbonylative cyclization/arylation is reported. This
transformation proceeds via the 5-endo-dig cyclization of 2-propargylpyridine triggered by an aroyl Pd complex. It produced diversely substituted
2-aroylindolizines in good to excellent yields.
Indolizines have attracted noteworthy attention in recent
years because of their profound biological effects.1 Both
naturally occurring and synthetic indolizines have shown
great potential in pharmaceutical research as cytotoxins,2
anti-inflammatory agents,3 and 5-HT3 receptor antago-
nists.4 In this regard, transformations that utilize readily
available substrates to provide access to diversely sub-
stituted indolizines, especially those bearing an electron-
withdrawing group at the C-2 postion,5 are in high demand.
The classic Tschichibabin reaction provides straightforward
access to C-2-substituted indolizines via the condensation of
picolines and R-bromoacetophenone derivatives. However,
the limited availability of starting materials restricts the
substitution pattern of the product.6 The [3 þ 2] cycload-
dition of pyridinium ylides with alkynes provides another
viable route to the indolizine core. However, the regios-
electivity issue, as well as the moderate yields caused by
necessary oxidation of the formed intermediate, limit its
synthetic application.7 The MoritaꢀBaylisꢀHillman reac-
tion can also be utilized for the preparation of indolizin-2-yl
ketone from an appropriate Michael acceptor. However,
it suffers from the narrow range of starting materials that
can be used and the usually low reactivity of the sub-
strates.8 In addition to the traditional condensation methods,
transition-metal catalysis has been widely used for the
(1) (a) Flitsch, W. Comprehensive Heterocyclic Chemistry, II; Perga-
mon Press: Oxford, 1984; Vol. 8, 237ꢀ 248. (b) Fan, H.; Peng, J.; Hamann,
M. T.; Hu, J.-F. Chem. Rev. 2008, 108, 264.
(2) (a) Ishibashi, F.; Tanabe, S.; Oda, T.; Iwao, M. J. Nat. Prod. 2002,
65, 500. (b) Pla, D.; Marchal, A.; Olsen, C. A.; Francesch, A.; Cuevas, C.;
Albericio, F.; Alvarez, M. J. Med. Chem. 2006, 49, 3257. (c) Chittchang, M.;
Batsomboon, P.; Ruchirawat, S.; Ploypradith, P. ChemMedChem 2009,
4, 457.
(6) (a) Tschitschibabin, A. E. Ber. Dtsch. Chem. Ges. 1927, 60, 1607.
(b) Kostik, E. L.; Abiko, A.; Oku, A. J. Org. Chem. 2001, 66, 2618.
(c) Liu, Y.; Sun, J.-W. J. Org. Chem. 2012, 77, 1191.
(7) (a) Katritzky, A. R.; Qiou, G.; Yang, B.; He, H.-Y. J. Org. Chem.
1999, 64, 7618. (b) Bora, U.; Saikia, A.; Boruah, R. C. Org. Lett. 2003, 5,
€
435. (c) Rotaru, A. V.; Druta, I. D.; Oeser, T.; Muller, T. J. J. Helv. Chim.
Acta 2005, 88, 1798.
(3) Oslund, R. C.; Cermak, N.; Gelb, M. H. J. Med. Chem. 2008, 51,
4708.
(8) (a) Bode, M. L.; Kaye, P. T. J. Chem. Soc., Perkin Trans. 1 1990,
2612. (b) Basavaiah, D.; Rao, A. J. Chem. Commun. 2003, 604.
(c) Specowius, V.; Bendrath, F.; Winterberg, M.; Khurshid, A.; Langer,
P. Adv. Synth. Catal. 2012, 354, 1163.
(4) Bermudez, J.; Fake, C. S.; Joiner, G. F.; Joiner, K. A.; King,
F. D.; Miner, W. D.; Sanger, G. J. J. Med. Chem. 1990, 33, 1924.
(5) For biological activity of indolizines bearing an electron-with-
drawing group at the C-2 position, see: (a) Shen, Y.-M.; Lv, P.-C.; Chen,
W.; Liu, P.-G.; Zhu, H.-L.; Zhang, M.-Z. Eur. J. Med. Chem. 2010, 45,
3184–3190. (b) Wu, X.-W.; Wu, Z.-P.; Chen, J.-W.; Zhang, W.; Gu,
L.-Q.; Huang, Z.-S.; An, L.-K.; Wang, L.-X.; Zhang, H.-B. Eur. J. Med.
Chem. 2011, 46, 4625. (c) Warui, D. M.; Baranger, A. M. J. Med. Chem.
2009, 52, 5462.
(9) (a) Kel’in, A. V.; Sromek, A. W.; Gevorgyan, V. J. Am. Chem.
Soc. 2001, 123, 2074. (b) Seregin, I.; Gevorgyan, V. J. Am. Chem. Soc.
2006, 128, 12050. (c) Liu, Y.; Song, Z.; Yan, B. Org. Lett. 2007, 9, 409.
(d) Chuprakov, S.; Gevorgyan, V. Org. Lett. 2007, 9, 4463. (e) Hardin,
A. R.; Sarpong, R. Org. Lett. 2007, 9, 4547. (f) Barluenga, J.; Lonzi, G.;
ꢀ
ꢀ
Riesgo, L.; Lopez, L. A.; Tomas, M. J. Am. Chem. Soc. 2010, 132,
13200and refs 11 and 15.
r
10.1021/ol302947r
XXXX American Chemical Society