Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C6CC04109D
COMMUNICATION
Journal Name
by eosin Y radical anion affords a Co(I) species (E1/2 red [CoII/CoI] 4. K.ꢀH. He and Y. Li, ChemSusChem, 2014,
7
, 2788ꢀ2790.
= −1.00 V vs SCE)14 and completes the photocatalytic cycle (E1/2 5. (a) N. Zeug, J. Buecheler and H. Kisch, J. Am. Chem. Soc., 1985, 107
,
[eosin Y•‒/ eosin Y] = −1.06 V vs SCE).13 Protonation of the 1459ꢀ1465; (b) T. Mitkina, C. Stanglmair, W. Setzer, M. Gruber, H. Kisch
red
formed Co(I) species, on the other hand, provides a CoIII−H and B. Konig, Orga. Bio. Chem., 2012, 10, 3556ꢀ3561.
hydrid 17, which reacts with proton to release H2. The 6. (a) Q.ꢀY. Meng, J.ꢀJ. Zhong, Q. Liu, X.ꢀW. Gao, H.ꢀH. Zhang, T. Lei, Z.ꢀ
alternative homolytic mechanism, involving
a
reaction J. Li, K. Feng, B. Chen, C.ꢀH. Tung and L.ꢀZ. Wu, J. Am. Chem. Soc., 2013,
between two CoIII−H hydrids to form H2 could not be ruled out. 135, 19052ꢀ19055; (b) X. B. Li, Z. J. Li, Y. J. Gao, Q. Y. Meng, S. Yu, R. G.
The reactive intermediate CoIII−H hydrid 17 could also in-situ Weiss, C. H. Tung and L. Z. Wu, Angew. Chem. Int. Ed., 2014, 53, 2085ꢀ
reduce the α-methylstyrene derivatives
2 to generate Co(III) 14 2089; (c) J. J. Zhong, Q. Y. Meng, B. Liu, X. B. Li, X. W. Gao, T. Lei, C. J.
and cumene derivatives 19. An alternative mechanism in Wu, Z. J. Li, C. H. Tung and L. Z. Wu, Org. Lett., 2014, 16, 1988ꢀ1991; (d)
oxidative quenching pathway is also possible (see the ESI†, Fig. X.ꢀW. Gao, Q.ꢀY. Meng, J.ꢀX. Li, J.ꢀJ. Zhong, T. Lei, X.ꢀB. Li, C.ꢀH. Tung and
S5)
L.ꢀZ. Wu, ACS Catal., 2015, 2391ꢀ2396, (e) M. Xiang, Q.ꢀY. Meng, J.ꢀX. Li,
In conclusion, allyl sulfones were obtained from the cross- Y.ꢀW. Zheng, C. Ye, Z.ꢀJ. Li, B. Chen, C.ꢀH. Tung and L.ꢀZ. Wu, Chem. Eur.
coupling of sulfinic acids and α-methylstyrene derivatives by J. 2015, 21, 18080ꢀ18084.
oxidant-free photoredox cobalt catalysis with H2 evolution. 7. G. Zhang, C. Liu, H. Yi, Q. Meng, C. Bian, H. Chen, J.ꢀX. Jian, L.ꢀZ. Wu
The combination of an organic photosensitizer and cobaloxime and A. Lei, J. Am. Chem. Soc., 2015, 137, 9273ꢀ9280.
catalyst Co(dmgH)2pyCl enables the transformation with good 8. (a) J.ꢀN. Desrosiers and A. B. Charette, Angew. Chem. Int. Ed., 2007
,
yields and functional group tolerance. In the light driven 46, 5955ꢀ5957; (b) M. N. Noshi, A. Elꢀawa, E. Torres and P. L. Fuchs, J. Am.
thermodynamically uphill reaction, visible-light energy might Chem. Soc., 2007, 129, 11242ꢀ11247; (c) R. Ettari, E. Nizi, M. E. Di
be stored and converted into chemical potential energy and Francesco, M.ꢀA. Dude, G. Pradel, R. Vičík, T. Schirmeister, N. Micale, S.
H2. Furthermore, radical inhibition and EPR experiments Grasso and M. Zappalà, J. Med. Chem., 2008, 51, 988ꢀ996; (d) Q. Zhu and
revealed that this reaction might involve a radical process.
This work was supported by the 973 Program (2011CB808600,
2012CB725302, 2013CB834804), the National Natural Science
Foundation of China (21390400, 21272180, 21302148,
91427303 and 21402217), the Key Research Programme of the
Chinese Academy of Sciences (KGZD-EW-T05) and the
Research Fund for the Doctoral Program of Higher Education
of China (20120141130002) and the Ministry of Science and
Technology of China (2012YQ120060) and the Program for
Changjiang Scholars and Innovative Research Team in
University (IRT1030).The Program of Introducing Talents of
Discipline to Universities of China (111 Program) is also
appreciated.
Y. Lu, Org. Lett., 2009, 11, 1721ꢀ1724.
9. (a) Q. Jiang, B. Xu, J. Jia, A. Zhao, Y. R. Zhao, Y. Y. Li, N. N. He and C.
C. Guo, J. Org. Chem., 2014, 79, 7372ꢀ7379; (b) X. Li, Y. Xu, W. Wu, C.
Jiang, C. Qi and H. Jiang, Chem. Eur. J., 2014, 20, 7911ꢀ7915; (c) B. V.
Rokade and K. R. Prabhu, J. Org. Chem., 2014, 79, 8110ꢀ8117; (d) W. Wei,
J. Wen, D. Yang, J. Du, J. You and H. Wang, Green Chem., 2014, 16, 2988;
(e) W. Wei, J. Wen, D. Yang, M. Wu, J. You and H. Wang, Org. Biomol.
Chem., 2014, 12, 7678ꢀ7681; (f) F. Xiao, H. Chen, H. Xie, S. Chen, L. Yang
and G. J. Deng, Org. Lett., 2014, 16, 50ꢀ53; (g) Y. Xu, X. Tang, W. Hu, W.
Wu and H. Jiang, Green Chem., 2014, 16, 3720; (h) G. Rong, J. Mao, H.
Yan, Y. Zheng and G. Zhang, J. Org. Chem., 2015, 80, 4697ꢀ4703; (i) L. Gu,
C. Jin, J. Liu, H. Ding and B. Fan, Chem. Commun., 2014, 50, 4643ꢀ4645; (j)
A. U. Meyer, S. Jäger, D. Prasad Hari and B. König, Adv. Synth. Catal.,
2015, 357, 2050ꢀ2054; (k) W. Yang, S. Yang, P. Li and L. Wang, Chem.
Commun., 2015, 51, 7520ꢀ7523.
Notes and references
10. (a) Q. Lu, J. Zhang, F. Wei, Y. Qi, H. Wang, Z. Liu and A. Lei, Angew.
Chem. Int. Ed., 2013, 52, 7156ꢀ7159; (b) Q. Lu, J. Zhang, G. Zhao, Y. Qi, H.
Wang and A. Lei, J. Am. Chem. Soc., 2013, 135, 11481ꢀ11484; (c) W. Wei,
C. Liu, D. Yang, J. Wen, J. You, Y. Suo and H. Wang, Chem. Commun.,
2013, 49, 10239ꢀ10241.
1. (a) M. Mellah, A. Voituriez and E. Schulz, Chem. Rev., 2007, 107, 5133ꢀ
5209; (b) A. R. Murphy and J. M. J. Fréchet, Chem. Rev., 2007, 107, 1066ꢀ
1096; (c) D. C. Cole, W. J. Lennox, S. Lombardi, J. W. Ellingboe, R. C.
Bernotas, G. J. Tawa, H. Mazandarani, D. L. Smith, G. Zhang, J. Coupet
and L. E. Schechter, J. Med. Chem., 2005, 48, 353ꢀ356.
11. (a) X. Li, X. Xu and C. Zhou, Chem. Commun., 2012, 48, 12240ꢀ12242;
(b) S. Tang, Y. Wu, W. Liao, R. Bai, C. Liu and A. Lei, Chem. Commun.,
2014, 50, 4496ꢀ4499; (c) R. Singh, B. K. Allam, N. Singh, K. Kumari, S. K.
Singh and K. N. Singh, Org. Lett., 2015, 17, 2656ꢀ2659.
2. (a) I. P. Beletskaya and V. P. Ananikov, in Catalyzed Carbon-
Heteroatom Bond Formation, WileyꢀVCH Verlag GmbH
& Co. KGaA,
2010,.ch3, pp. 69ꢀ118; (b) P. Bichler and J. Love, in C-X Bond Formation,
ed. A. Vigalok, Springer Berlin Heidelberg, 2010, vol. 31, ch. 3, pp. 39ꢀ64;
(c) T. W. Lyons and M. S. Sanford, Chem. Rev., 2010, 110, 1147ꢀ1169; (d) I.
P. Beletskaya and V. P. Ananikov, Chem. Rev., 2011, 111, 1596ꢀ1636; (e)
T. Shen, Y. Yuan, S. Song and N. Jiao, Chem. Commun., 2014, 50, 4115ꢀ
4118; (f) Y. Xi, B. Dong, E. J. McClain, Q. Wang, T. L. Gregg, N. G.
12. G. R. Buettner, Free Radical Biol. Med., 1987, 3, 259ꢀ303.
13. C. K. Prier, D. A. Rankic and D. W. MacMillan, Chem. Rev., 2013, 113,
5322ꢀ5363.
14. P. Du, J. Schneider, G. Luo, W. W. Brennessel and R. Eisenberg, Inorg.
Chem., 2009, 48, 4952ꢀ4962.
Akhmedov, J. L. Petersen and X. Shi, Angew. Chem. Int. Ed., 2014, 53
,
4657ꢀ4661; (g) J. Yuan, X. Ma, H. Yi, C. Liu and A. Lei, Chem. Commun.,
2014, 50, 14386ꢀ14389.
3. (a) V. Nair, A. Augustine, T. G. George and L. G. Nair, Tetrahedron
Lett., 2001, 42, 6763ꢀ6765; (b) P. Katrun, S. Chiampanichayakul, K.
Korworapan, M. Pohmakotr, V. Reutrakul, T. Jaipetch and C. Kuhakarn, E.
J. Org. Chem., 2010, 2010, 5633ꢀ5641.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins