versatile synthon for the synthesis of spiro[pyrrolidin-
3,30-oxindoles] via the ring-expansion reaction with
imines.8 Recently, the need for privileged scaffolds in
drug discovery gives an impetus for the catalytic asym-
metric synthesis of 3,3-disubstituted oxindoles, which are
widely present in natural products and drugs.9,10 With
our interest in this field,11 we tried to apply diazooxin-
doles 1 for catalytic asymmetric reactions and found that
although catalysts 4ꢀ83a,3c,12,2c,2e had proven to be ex-
cellent for the decomposition of diazo compounds for
reaction design, they were unable to achieve high ee in the
reaction of diazoamide 1a and styrene 2a under their
reported conditions, respectively (Scheme 1, for details,
see the Supporting Information). These results showed
the necessity to develop new chiral catalysts for this valuable
reaction. Here, we report a Hg(II)-catalyzed highly enan-
tioselective reaction of diazooxindoles 1 and alkenes 2.
Scheme 1. Exploratory Studies
(5) For selected Co-catalyzed reactions, see: (a) Nakamura, A.;
Konishi, A.; Tatsuno, Y.; Otsuka, S. J. Am. Chem. Soc. 1978, 100,
3443. (b) Niimi, T.; Uchida, T.; Irie, R.; Katsuki, T. Adv. Synth. Catal.
2001, 343, 79. (c) Zhu, S.-F.; Ruppel, J. V.; Lu, H.-J.; Wojtas, L.; Zhang,
X. P. J. Am. Chem. Soc. 2008, 130, 5042. (d) Fantauzzi, S.; Gallo, E.;
Rose, E.; Raoul, N.; Caselli, A.; Issa, S.; Ragaini, F.; Cenini, S.
Organometallics 2008, 27, 6143. (e) Zhu, S.-F.; Perman, J. A.;
Zhang, X. P. Angew. Chem., Int. Ed. 2008, 47, 8460. (f) Morandi, B.;
Mariampillai, B.; Carreira, E. M. Angew. Chem., Int. Ed. 2011, 50, 1101.
(g) Xu, X.; Lu, H.-J.; Ruppel, J. V.; Cui, X.; Mesa, S. L.; Wojtas, L.;
Zhang, X. P. J. Am. Chem. Soc. 2011, 133, 15292.
(6) For selected other metal-catalyzed reactions, see: (a) Wolf, J. R.;
Hamaker, C. G.; Djukic, J. P.; Kodadek, T.; Woo, L. K. J. Am. Chem.
Soc. 1995, 117, 9194. (b) Kanchiku, S.; Suematsu, H.; Matsumoto, K.;
Uchida, T.; Katsuki, T. Angew. Chem., Int. Ed. 2007, 46, 3889. (c)
Ichinose, M.; Suematsu, H.; Katsuki, T. Angew. Chem., Int. Ed. 2009, 48,
3121. (d) Nicolas, I.; Roisnel, T.; Maux, P. L.; Simonneaux, G. Tetra-
hedron Lett. 2009, 50, 5149.
(7) (a) Muthusamy, S.; Gunanathan, C. Synlett 2003, 11, 1599. (b)
Jiang, T.; Kuhen, K. L.; Wolff, K.; Yin, H.; Bieza, K.; Caldwell, J.;
Bursulaya, B.; Wu, T. Y.-H.; He, Y. Bioorg. Med. Chem. Lett. 2006, 16,
2105. (c) Kumari, G.; Nutan; Modi, M.; Gupta, S. K.; Singh, R. K. Eur.
J. Med. Chem. 2011, 46, 1181. (d) Chen, S.-F.; Ma, J.; Wang, J.-B.
Tetrahedron Lett. 2008, 49, 6781. (e) Muthusamy, S.; Azhagan, D.;
Gnanaprakasam, B.; Suresh, E. Tetrahedron Lett. 2010, 51, 5662. (f)
Chen, L.; Huang, M.; Li, F.; He, Y.; Yun, H. PCT Int. Appl. WO
201169298, 2011. (g) Peter, B.; Li, S.-W.; Liu, Y.; Pauls, H. W. L.; Edwards,
G.; Forrest, B. T.; Feher, M.; Patel, N. K. B.; Pan, G. PCT Int. Appl. WO
2010115279, 2010.For the organocatalytic method, see: (h) Pesciaioli, F.;
Righi, P.; Mazzanti, A.; Bartoli, G.; Bencivenni, G. Chem.;Eur. J. 2011,
17, 2842. (i) Dou, X. W.; Lu, Y. X. Chem.;Eur. J. 2012, 18, 8315.
(8) (a) Alper, P. B.; Meyers, C.; Lerchner, A.; Siegel, D. R.; Carreira,
E. M. Angew. Chem., Int. Ed. 1999, 38, 3186. (b) Marti, C.; Carreira,
E. M. J. Am. Chem. Soc. 2005, 127, 11505. Also see: (c) Marti, C.;
Carreira, E. M. Eur. J. Org. Chem. 2003, 2209.
(9) For reviews, see: (a) Zhou, F.; Liu, Y.-L.; Zhou, J. Adv. Synth. Catal.
2010, 352, 1381. (b) Shen, K.; Liu, X.; Lin, L.; Feng, X. Chem. Sci. 2012, 3,
327. (c) BallJones, N. R.; Badille, J. J.; Franz, A. K. Org. Biomol. Chem.
2012, 10, 5165. (d) Galliford, C. V.; Scheidt, K. A. Angew. Chem., Int. Ed.
2007, 46, 8748. (e) Trost, B. M.; Brennan, M. K. Synthesis 2009, 3003.
(10) For selected catalytic asymmetric construction of spirocyclic
oxindoles, see: (a) Sun, L.-H.; Shen, L.-T.; Ye, S. Chem. Commun. 2011,
47, 10136. (b) Jiang, X.; Cao, Y.; Wang, Y.; Liu, L.; Shen, F.; Wang, R.
J. Am. Chem. Soc. 2010, 132, 15328. (c) Trost, B. M.; Cramer, N.;
Silverman, S. M. J. Am. Chem. Soc. 2007, 129, 12396. (d) Bencivenni, G.;
Wu, L.-Y.; Mazzanti, A.; Giannichi, B.; Pesciaioli, F.; Song, M.-P.;
Bartoli, G.; Melchiorre, P. Angew. Chem., Int. Ed. 2009, 48, 7200. (e)
Chen, X.-H.; Wei, Q.; Luo, S.-W.; Xiao, H.; Gong, L.-Z. J. Am. Chem.
Soc. 2009, 131, 13819. (f) Antonchick, A. P.; Gerding-Reimers, C.;
Catarinella, M.; Schurmann, M.; Preut, H.; Ziegler, S.; Rauh, D.;
Waldmann, H. Nat. Chem. 2010, 2, 735. (g) Tan, B.; Candeias, N.;
Barbas, C. F., III. Nat. Chem. 2011, 3, 473. (h) Lan, Y.-B.; Zhao, H.; Liu,
Z.-M.; Liu, G.-G.; Tao, J.-C.; Wang, X. W. Org. Lett. 2011, 13, 4866. (i)
Liu, L.; Wu, D.; Li, X.; Wang, S.; Li, H.; Li, J.; Wang, W. Chem.
Commun. 2012, 48, 1692. (j) Huang, X.; Peng, J.; Dong, L.; Chen, Y.-C.
Chem. Commun. 2012, 48, 2439.
We have reported that Hg(II) could highly effici-
ently activate allyltrimethylsilane for allylation of isatins
and activate electron-rich aromatics for the arylation of
3-hydroxyoxindoles.13 Considering the excellence of Hg(II)
as a soft Lewis acid to activate soft bases, we speculated
that it would be possible to use Hg(II) to decompose diazo
compounds, a kind of soft bases,14 for cyclopropanation
reactions. With this in mind, we tried using 5.0 mol % of
Hg(OTf)2 to catalyze the reaction of 1a and 2a in CH2Cl2
at 0 °C and found to our delight that the reaction could be
complete within 4 h to give product 3a in 60% yield with
excellent dr (entry 1, Table 1). We further compared
Hg(OTf)2 with other widely used metal catalysts in this reac-
tion, and Hg(OTf)2 turned out to be more efficient (entries
2ꢀ10). Rh2(OAc)4 failed to catalyze the reaction at 0 °C
but worked well at 25 °C to give product 3a in 91% yield
after 48 h, with lower dr (entry 2). Even at 25 °C, Ru(II),
Cu(I), and Cu(II) catalyzed the reaction very slowly (entries
3ꢀ5). At 0 °C, Pd(OTf)2 catalyzed the reaction at a much
lower rate than Hg(OTf)2 (entry 6 vs 1). Other triflates
derived from Ag(I), Co(II), Fe(III), and Fe(II) all failed to
catalyze this reaction, either at 0 or 25 °C (entries 7ꢀ10).
These results were in accordance with Wang’s observation
that the reactivity of diazooxindole 1 was low.7d
The high efficiency that Hg(OTf)2 demonstrated in this
reaction was very impressive, which encouraged us to
develop an asymmetric protocol. Diphosphine ligands could
effectively modulate the catalyst properties of Hg(OTf)2,
(11) (a) Liu, Y.-L.; Wang, B.-L.; Cao, J.-J.; Chen, L.; Zhang, Y.-X.;
Wang, C.; Zhou, J. J. Am. Chem. Soc. 2010, 132, 15176. (b) Ding, M.;
Zhou, F.; Liu, Y.-L.; Wang, C.-H.; Zhao, X.-L.; Zhou, J. Chem. Sci.
2011, 2, 2035. (c) Qian, Z.-Q.; Zhou, F.; Du, T.-P.; Wang, B.-L.; Ding,
M.; Zhao, X.-L.; Zhou, J. Chem. Commun. 2009, 6753. (d) Liu, Y.-L.;
Zhou, J. Chem. Commun. 201210.1039/c2cc36665g. (e) Liu, Y.-L.; Zhou, J.
Chem. Commun. 2012, 48, 1919. (f) Zhou, F.; Ding, M.; Liu, Y.-L.;
Zhou, J. Adv. Synth. Catal. 2011, 353, 2945.
(12) Briones, J. F.; Davies, H. M. L. J. Am. Chem. Soc. 2012, 134,
11916.
(13) (a) Cao, Z.-Y.; Zhang, Y.; Ji, C.-B.; Zhou, J. Org. Lett. 2011, 13,
6398. (b) Zhu, F.; Zhou, F.; Cao, Z.-Y.; Wang, C.; Zhang, Y.-X.; Wang,
C.-H.; Zhou, J. Synthesis 2012, 3129. (c) Zhou, F.; Cao, Z.-Y.; Zhang, J.;
Yang, H.-B.; Zhou, J. Chem.;Asian J. 2012, 7, 233.
(14) Ho, T.-L. Chem. Rev. 1975, 75, 1.
B
Org. Lett., Vol. XX, No. XX, XXXX