S. Rogalski et al. / Applied Catalysis A: General 445–446 (2012) 261–268
267
[3] E.W. Colvin, Silicon Reagents in Organic Synthesis, Academic Press, London,
1988.
[4] T.-Y. Luh, S.-T. Liu, in: Z. Rappoport, Y. Apeloig (Eds.), The Chemistry of
Organosilicon Compounds, Wiley, Chichester, 1998.
[5] H.F. Sore, W.R.J.D. Galloway, D.R. Spring, Chem. Soc. Rev. 41 (2012) 1845–1866.
[6] Y. Nakao, T. Hiyama, Chem. Soc. Rev. 40 (2011) 4893–4901.
[7] S.E. Denmark, J.H.-C. Liu, Angew. Chem. Int. Ed. 49 (2010) 2978–2986.
[8] S.E. Denmark, J. Org. Chem. 74 (2009) 2915–2927.
[9] S.E. Denmark, C.S. Regens, Acc. Chem. Res. 41 (2008) 1486–1499.
[10] S.E. Denmark, J.D. Baird, Chem. Eur. J. 12 (2006) 4954–4963.
[11] Y. Nakao, A.K. Sahoo, H. Imanaka, A. Yada, T. Hiyama, Pure Appl. Chem. 78 (2006)
435–440.
[12] S.E. Denmark, R.F. Sweis, in: A. de Meijere, F. Diederich (Eds.), Metal-Catalysed
Cross-Coupling Reactions, Wiley-VCH, Weinheim, 2004.
[13] S.E. Denmark, M.H. Ober, Aldrichim. Acta 36 (2003) 75–85.
[14] F. Babudri, G.M. Farinola, V. Fiandanese, L. Mazzone, F. Naso, Tetrahedron 54
(1998) 1085.
[15] S.E. Denmark, S.A. Tymonko, J. Am. Chem. Soc. 127 (2005) 8004–8005.
[16] K. Karabelas, A. Hallberg, Acta Chem. Scand. 44 (1990) 257–261.
[17] C. Thiot, C. Mioskowski, A. Wagner, Eur. J. Org. Chem. 74 (2009) 3219–3227.
[18] Y. Hatanaka, T. Hiyama, J. Org. Chem. 54 (1989) 268–270.
[19] K. Karabelas, A. Hallberg, J. Org. Chem. 54 (1989) 1773–1776.
[20] H.F. Sore, C.M. Boehner, L. Laraia, P. Logoteta, C. Prestinari, M. Scott, K. Williams,
W.R.J.D. Galloway, D.R. Spring, Org. Biomol. Chem. 9 (2011) 504–515.
[21] P. Pawluc, G. Hreczycho, J. Szudkowska, A. Franczyk, B. Marciniec, Appl.
Organomet. Chem. 24 (2010) 853–857.
Fig. 9. Split test. Conditions: [RuHCl(CO)(PCy3)2] (2.74 × 10−5 mol), IL 3 (0.2 g), 1e
(1.37 × 10−3 mol), dodecane (internal standard) (0.05 mL), 130 ◦C, argon.
[22] E. Hagiwara, K.-I. Gouda, Y. Hatanaka, T. Hiyama, Tetrahedron Lett. 38 (1997)
439–442.
[23] X. Meng, T. Yokoi, D. Lu, T. Tatsumi, Angew. Chem. Int. Ed. 46 (2007) 7796–7798.
[24] C. Vercaemst, M. Ide, B. Allaert, N. Ledoux, F. Verpoort, P. Van Der Voort, Chem.
Commun. (2007) 2261–2263.
immobilized complex 6 was 95%, whereas no further progress in
conversion took place in the decanted portion of the upper layer
(Fig. 9). Results of the experiment suggest that catalytic activity
originates from the complex immobilized in ionic liquid.
[25] K. Nakajima, I. Tomita, M. Hara, S. Hayashi, K. Domen, J.N. Kondo, J. Mater. Chem.
15 (2005) 2362–2368.
[26] T. Asefa, M. Kruk, M.J. MacLachlan, N. Coombs, H. Grondey, M. Jaroniec, G.A.
Ozin, J. Am. Chem. Soc. 123 (2001) 8520–8530.
4. Conclusions
[27] B. Marciniec (Ed.), Comprehensive Handbook on Hydrosilylation, Pergamon
Press, Oxford, 1992, pp 192–196.
[28] F. Alonso, R. Buitrago, Y. Moglie, J. Ruiz-Martinez, A. Sepulveda-Escribano, M.
Yus, J. Organomet. Chem. 696 (2011) 368–372.
[29] A. Sato, H. Kinoshita, H. Shinokubo, K. Oshima, Org. Lett. 6 (2004) 2217–2220.
[30] P. Arsenyan, K. Oberte, K. Rubina, S. Belyakov, Tetrahedron Lett. 46 (2005)
1001–1003.
[31] For review see: B. Marciniec, H. Maciejewski, C. Pietraszuk, P. Pawluc, in: B.
Marciniec (Ed.), Hydrosilylation. A Comprehensive Review on Recent Advances,
Springer, Berlin, 2009, pp. 3–51.
[32] B. Marciniec, Coord. Chem. Rev. 249 (2005) 2374–2390.
[33] M. Chauhan, B.J. Hauck, L.P. Keller, P. Boudjouk, J. Organomet. Chem. 645 (2002)
1–13.
[34] R.N. Naumov, M. Itazaki, M. Kamitani, H. Nakazawa, J. Am. Chem. Soc. 134
(2012) 804–807.
[35] M. Suginome, Y. Ito, Chem. Rev. 100 (2000) 3221–3256.
[36] I. Beletskaya, C. Moberg, Chem. Rev. 106 (2006) 2320–2354.
[37] M. Suginome, T. Matsuda, T. Ohmura, A. Seki, M. Murakami, in: R. Crabtree,
D.M.P. Mingos (Eds.), Comprehensive Organometallic Chemistry III, vol. 10,
Elsevier, Oxford, 2007, pp. 725–787.
[38] H.E. Burks, J.P. Morken, Chem. Commun. (2007) 4717–4725.
[39] C. Pubill-Ulldemolins, A. Bonet, C. Bo, H. Gulyas, E. Fernandez, Org. Biomol.
Chem. 8 (2010) 2667–2682.
Comprehensive screening of a number of ruthenium com-
plexes and a variety of commercially available ionic liquids
enabled determination of the optimum conditions for high
yield stereoselective syntheses of E-1,2-bis(silyl)ethenes car-
ried out in ionic liquids as reaction media. [RuHCl(CO)(PCy3)2]
tolerates well ammonium-, pyridinium- and imidazolium-
based ionic liquids tested, including chloride derivatives
even at 130 ◦C. [RuHCl(CO)(PCy3)2] immobilized in 1-butyl-3-
methylimidazolium bis(trifluoromethylsulphonyl)imide (IL 3)
and 1,2,3-trimethylimidazolium methylsulphate (IL 7) exhibit
catalytic activity in regio- and stereoselective homocoupling of
vinylsilanes and can be recycled up to 10 times in homocoupling
of methylbis(trimethylsilyloxy)vinylsilane and up to 12 times in
homocoupling of phenyldimethylvinylsilane without a significant
change in catalytic performance. The effectiveness of the catalytic
system is determined by several factors including stability of the
catalyst and solubility of vinylsilanes in ionic liquids under the
reaction conditions. The developed synthesis procedures enables
a simple separation of products from ionic liquid by decantation.
The source of catalytic activity is the catalyst immobilized in ionic
liquid phase as concluded from results of a split test.
[40] B. Marciniec, C. Pietraszuk, in: R.H. Grubbs (Ed.), Handbook of Metathesis,
Wiley-VCH, Weinheim, 2003, pp. 463–490.
[41] B. Marciniec, C. Pietraszuk, Curr. Org. Chem. 7 (2003) 691–735.
[42] C. Pietraszuk, B. Marciniec, S. Rogalski, H. Fischer, J. Mol. Catal. A: Chem. 240
(2005) 67–71.
[43] A. Keller, R. Matusiak, J. Mol. Catal. A: Chem. 104 (1996) 213–219.
[44] M. Majchrzak, B. Marciniec, Y. Itami, Adv. Synth. Catal. 347 (2005) 1285–1294.
[45] Y. Wakatsuki, H. Yamazaki, M. Nakano, Y. Yamamoto, J. Chem. Soc. Chem. Com-
mun. (1991) 703–704.
Acknowledgement
[46] B. Marciniec, C. Pietraszuk, J. Chem. Soc. Chem. Commun. (1995) 2003–2004.
[47] B. Marciniec, C. Pietraszuk, Organometallics 16 (1997) 4320–4326.
[48] T. Welton, Coord. Chem. Rev. 248 (2004) 2459–2477.
[49] T.J. Geldbach, P.J. Dyson, Metal Catalysed Reactions in Ionic Liquids, Springer,
Berlin, 2005.
Financial support from the Ministry of Science and Higher
Education (Poland) (project No. N N204 165436) is gratefully
acknowledged.
[50] Z.C. Zhang, Adv. Catal. 49 (2006) 153–238.
[51] R. Giernoth, Top. Curr. Chem. 276 (2007) 1–23.
Appendix A. Supplementary data
[52] V.I. Parvulescu, C. Hardacre, Chem. Rev. 107 (2007) 2615–2665.
[53] S. Liu, J. Xiao, J. Mol. Catal. A: Chem. 270 (2007) 1–43.
[54] H. Olivier-Bourbigou, L. Magna, D. Morvan, Appl. Catal. A: Gen. 373 (2010) 1–56.
[55] J.P. Hallett, T. Welton, Chem. Rev. 111 (2011) 3508–3576.
[56] J. Durand, E. Teuma, M. Gomez, C. R. Chim. 10 (2007) 152–177.
[57] L.A. Muller, J. Dupont, R.F. de Souza, Macromol. Rapid Commun. 19 (1998)
409–411.
Supplementary data associated with this article can be
[58] R.F. de Souza, V. Rech, J. Dupont, Adv. Synth. Catal. 344 (2002) 153–155.
[59] P.J. Dyson, D.J. Ellis, D.G. Parker, T. Welton, Chem. Commun. (1999) 25–26.
[60] P.J. Dyson, D.J. Ellis, W. Henderson, G. Laurenczy, Adv. Synth. Catal. 345 (2003)
216–221.
References
[1] T.H. Chan, I. Fleming, Synthesis (1979) 761–786.
[2] W.P. Weber, Silicon Reagents for Organic Synthesis, Springer, Berlin, 1983.
[61] P.J. Dyson, Appl. Organomet. Chem. 16 (2002) 495–500.