Please do not adjust margins
ChemComm
Page 4 of 5
DOI: 10.1039/C8CC00547H
COMMUNICATION
Journal Name
3. (a) B. M. Monks and S. P. Cook, Angew. Chem. Int. Ed., 2013, 52, 14214; (b) L.
Quebatte, K. Thommes and K. Severin, J. Am. Chem. Soc., 2006, 128, 7440; (c) H.
Yorimitsu, T. Nakamura, H. Shinokubo, K. Oshima, K. Omoto and H. Fujimoto, J.
Am. Chem. Soc., 2000, 122, 11041; (d) H. Yorimitsu, T. Nakamura, H. Shinokubo
and K. Oshima, J. Org. Chem., 1998, 63, 8604; (e) D. P. Curran and C. M. Seong, J.
Am. Chem. Soc., 1990, 112, 9401; (f) D. P. Curran, M. H. Chen, E. Spletzer, C. M.
Seong and C. T. Chang, J. Am. Chem. Soc., 1989, 111, 8872; (g) D. P. Curran, M. H.
Chen and D. Kim, J. Am. Chem. Soc., 1986, 108, 2489; (h) M. S. Kharasch, P. S. Skell
and P. Fisher, J. Am. Chem. Soc., 1948, 70, 1055; (i) M. S. Kharasch, E. V. Jensen
and W. H. Urry, Science, 1945, 102, 128.
4. (a) C.-J. Wallentin, J. D. Nguyen, P. Finkbeiner and C. R. J. Stephenson, J. Am.
Chem. Soc., 2012, 134, 8875; (b) J. D. Nguyen, J. W. Tucker, M. D. Konieczynska
and C. R. J. Stephenson, J. Am. Chem. Soc., 2011, 133, 4160.
5. (a) L.-L. Mao and H. Cong, ChemSusChem, 2017, 10, 4461; (b) Y. Shen, J. Cornella,
F. Juliá-Hernández and R. Martin, ACS Catal., 2017, 7, 409; (c) O. Reiser, Acc.
Chem. Res., 2016, 49, 1990; (d) M. Knorn, T. Rawner, R. Czerwieniec and O. Reiser,
ACS Catal., 2015, 5, 5186; (e) X.-J. Tang and W. R. Dolbier, Angew. Chem. Int. Ed.,
2015, 54, 4246.
6. (a) J. Twilton, C. Le, P. Zhang, M. H. Shaw, R. W. Evans and D. W. C. MacMillan,
Nat. Rev. Chem., 2017, 1, 0052; (b) N. A. Romero and D. A. Nicewicz, Chem. Rev.,
2016, 116, 10075; (c) M. N. Hopkinson, A. Tlahuext-Aca and F. Glorius, Acc. Chem.
Res., 2016, 49, 2261; (d) J.-R. Chen, X.-Q. Hu, L.-Q. Lu and W.-J. Xiao, Chem. Soc.
Rev., 2016, 45, 2044; (e) D. M. Schultz and T. P. Yoon, Science, 2014, 343,
1239176; (f) C. K. Prier, D. A. Rankic and D. W. C. MacMillan, Chem. Rev., 2013,
113, 5322; (g) J. M. R. Narayanam and C. R. J. Stephenson, Chem. Soc. Rev., 2011,
40, 102.
Scheme 2. Proposed mechanism.
7. (a) D. P. Tiwari, S. Dabral, J. Wen, J. Wiesenthal, S. Terhorst and C. Bolm, Org.
Lett., 2017, 19, 4295; (b) E. Arceo, E. Montroni and P. Melchiorre, Angew. Chem.
Int. Ed., 2014, 53, 12064.
8. (a) D. Koyama, H. J. A. Dale and A. J. Orr-Ewing, J. Am. Chem. Soc., 2018, DOI:
10.1021/jacs.7b07829; (b) J. C. Theriot, C.-H. Lim, H. Yang, M. D. Ryan, C. B.
Musgrave and G. M. Miyake, Science, 2016, 352, 1082; (c) C.-H. Lim, M. D. Ryan,
B. G. McCarthy, J. C. Theriot, S. M. Sartor, N. H. Damrauer, C. B. Musgrave and G.
M. Miyake, J. Am. Chem. Soc., 2016, 139, 348.
9. (a) B. Quiclet-Sire and S. Z. Zard, J. Am. Chem. Soc., 2015, 137, 6762; (b) K.
Weidner, A. Giroult, P. Panchaud and P. Renaud, J. Am. Chem. Soc., 2010, 132,
17511; (c) S.-i. Fujiwara, Y. Shimizu, T. Shin-ike and N. Kambe, Org. Lett., 2001, 3,
2085; (d) D. P. Curran, E. Eichenberger, M. Collis, M. G. Roepel and G. Thoma, J.
Am. Chem. Soc., 1994, 116, 4279.
10. (a) F. F. Fleming, L. Yao, P. C. Ravikumar, L. Funk and B. C. Shook, J. Med. Chem.,
2010, 53, 7902; (b) in Science of Synthesis, ed. S.-I. Murahashi, Georg Thieme
Verlag: Stuttgart, Germany, 2004, vol. 19; (c) G. P. Ellis and I. L. Thomas, in
Progress in Medicinal Chemistry, eds. G. P. Ellis and G. B. West, Elsevier, 1974, vol.
10, pp. 245; (d) D. T. Mowry, Chem. Rev., 1948, 42, 189.
which undergoes intersystem crossing to generate the long-lived
triplet state *3Eosin Y2- 27. The highly reducing excited state of 27
[E (EY*/EY+•) = −1.15 V vs SCE in MeCN]17 could facilitate the
½
single-electron reduction of TsCN (Ered = −0.78 V vs SCE in
½
CH3CN, see ESI for details) to generate the sulfonyl radical 28 and
the oxidized catalyst 29. The resulting electrophilic sulfonyl radical
28 should undergo facile addition to alkene, generating the first C-
S(O2) bond and an alkyl radical species 30. At this stage, we
hypothesized that the alkyl radical 30 would undergo single-
electron transfer (SET) with the oxidized catalyst 29 [E (EY+/EY+•
)
½
= +0.76 V vs SCE in MeCN]17 to form an alkyl cation species 31
and regenerate the ground-state eosin Y to close the catalytic cycle.
Finally, rapid trapping of carbon cation 31 by the anion CN would
yield the desired product.
11. (a) N. W. Liu, S. Liang and G. Manolikakes, Synthesis, 2016, 48, 1939; (b) A.-N. R.
Alba, X. Companyo and R. Rios, Chem. Soc. Rev., 2010, 39, 2018; (c) D. C.
Meadows and J. Gervay-Hague, Med. Res. Rev., 2006, 26, 793.
12. (a) V. Y. Kukushkin and A. J. L. Pombeiro, Inorg. Chim. Acta, 2005, 358, 1; (b) M.-X.
Wang, Top. Catal., 2005, 35, 117; (c) V. Y. Kukushkin and A. J. L. Pombeiro, Chem.
Rev., 2002, 102, 1771; (d) R. A. Michelin, M. Mozzon and R. Bertani, Coord. Chem.
Rev., 1996, 147, 299.
13. (a) R. Ren, Z. Wu, Y. Xu and C. Zhu, Angew. Chem. Int. Ed., 2016, 55, 2866; (b) N.
S. Dange, F. Robert and Y. Landais, Org. Lett., 2016, 18, 6156; (c) S. Kamijo, T.
Hoshikawa and M. Inoue, Org. Lett., 2011, 13, 5928; (d) B. Gaspar and E. M.
Carreira, Angew. Chem. Int. Ed., 2007, 46, 4519; (e) A.-P. Schaffner, V. Darmency
and P. Renaud, Angew. Chem. Int. Ed., 2006, 45, 5847.
In conclusion, we have demonstrated the regioselective
sulfonylcyanation of alkenes with TsCN via visible light-
mediated organophotoredox catalysis. This metal-free and
redox-neutral protocol is applicable to a wide array of alkenes
containing many important functional groups, incorporating
both sulfone and nitrile moieties with excellent atom
economy.
A closed catalytic cycle is operative in this
transformation, providing complementary reactivity to the
classic radical chain process.
14. (a) T. C. Johnson, B. Elbert, A. J. M. Farley, T. W. Gorman, C. Genicot, B. Lallemand,
P. Pasau, J. Flasz, J. L. Castro, M. MacCoss, D. J. Dixon, R. S. Paton, C. J. Schofield,
M. D. Smith and M. C. Willis, Chem. Sci., 2018, 9, 629; (b) S. Zhu, A. Pathigoolla, G.
Lowe, D. A. Walsh, M. Cooper, W. Lewis and H. W. Lam, Chem. Eur. J., 2017, 23,
n/a; (c) J. Tang, P. Sivaguru, Y. Ning, G. Zanoni and X. Bi, Org. Lett., 2017, 19, 4026;
(d) A. Garcia-Dominguez, S. Muller and C. Nevado, Angew. Chem. Int. Ed. Engl.,
2017, 56, 9949; (e) Y. Ning, Q. Ji, P. Liao, E. A. Anderson and X. Bi, Angew. Chem.
Int. Ed. Engl., 2017, 56, 13805; (f) P. Chen, C. Zhu, R. Zhu, W. Wu and H. Jiang,
Chem. Asian J., 2017, 12, 1875; (g) X. Cao, X. Cheng and J. Xuan, Org. Lett., 2017,
DOI: 10.1021/acs.orglett.7b03794; (h) S. K. Pagire, S. Paria and O. Reiser, Org.
Lett., 2016, 18, 2106; (i) H. Wang, G. Wang, Q. Lu, C.-W. Chiang, P. Peng, J. Zhou
and A. Lei, Chem. Eur. J., 2016, 22, 14489; (j) X. Liu, T. Cong, P. Liu and P. Sun, Org.
Biomol. Chem., 2016, 14, 9416; (k) W.-J. Hao, Y. Du, D. Wang, B. Jiang, Q. Gao, S.-J.
Tu and G. Li, Org. Lett., 2016, 18, 1884; (l) Z. Yuan, H.-Y. Wang, X. Mu, P. Chen, Y.-
L. Guo and G. Liu, J. Am. Chem. Soc., 2015, 137, 2468.
Notes and references
‡ We are grateful to the “Thousand Plan” youth program, the National
Natural Science Foundation of China (21702029), and the Shanghai Sailing
Program (17YF1400100), the National Natural Science Foundation of China
(21402078), and Foundation of Department of Education of Liaoning Province
(LJQ2015060) for support of this research.
1. (a) G. Yin, X. Mu and G. Liu, Acc. Chem. Res., 2016, 49, 2413; (b) A. Düfert and D.
B. Werz, Chem. Eur. J., 2016, 22, 16718; (c) R. I. McDonald, G. Liu and S. S. Stahl,
Chem. Rev., 2011, 111, 2981; (d) K. H. Jensen and M. S. Sigman, Org. Biomol.
Chem., 2008, 6, 4083; (e) M. Beller, J. Seayad, A. Tillack and H. Jiao, Angew. Chem.
Int. Ed., 2004, 43, 3368.
2. (a) X. Wang and A. Studer, Acc. Chem. Res., 2017, 50, 1712; (b) X.-W. Lan, N.-X.
Wang and Y. Xing, Eur. J. Org. Chem., 2017, 2017, 5821; (c) T. Koike and M. Akita,
Org. Chem. Front., 2016, 3, 1345; (d) T. Courant and G. Masson, J. Org. Chem.,
2016, 81, 6945; (e) A. J. Clark, Eur. J. Org. Chem., 2016, 2016, 2231; (f) A. Studer
and D. P. Curran, Angew. Chem. Int. Ed., 2016, 55, 58; (g) M.-Y. Cao, X. Ren and Z.
Lu, Tetrahedron Lett., 2015, 56, 3732; (h) R. M. Romero, T. H. Wöste and K. Muñiz,
Chem. Asian J., 2014, 9, 972; (i) H. Egami and M. Sodeoka, Angew. Chem. Int. Ed.,
2014, 53, 8294; (j) W. T. Eckenhoff and T. Pintauer, Cat. Rev., 2010, 52, 1; (k) T.
Pintauer and K. Matyjaszewski, Chem. Soc. Rev., 2008, 37, 1087.
15. (a) D. H. R. Barton, J. C. Jaszberenyi and E. A. Theodorakis, Tetrahedron, 1992, 48,
2613; (b) J.-M. Fang, M.-Y. Chen, M.-C. Cheng, G.-H. Lee, Y. Wang and P. Shie-
Ming, J. Chem. Res., 1989, 272; (c) J.-M. Fang and M.-Y. Chen, Tetrahedron Lett.,
1987, 28, 2853.
16. A. Talla, B. Driessen, N. J. W. Straathof, L.-G. Milroy, L. Brunsveld, V. Hessel and T.
Noël, Adv. Synth. Catal., 2015, 357, 2180.
17. T. Shen, Z.-G. Zhao, Q. Yu and H.-J. Xu, J. Photochem. Photobiol. A, 1989, 47, 203.
1
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins