ChemComm
Communication
activation. The ongoing studies seek to gain further insight into
the coupling reactions using other directing groups and to
expand the scope to the decarboxylative acylation of sp2 C–H
bonds without directing groups and unactivated sp3 C–H bonds.
This work was supported by National Research Foundation
of Korea (No. 2010-0002465) through the National Research
Foundation of Korea funded by the Ministry of Education,
Science and Technology.
Scheme 1 Expansion of substrate scope from ketoximes to aldoximes.
Notes and references
1 (a) H. Surburg and J. Panten, Common Fragrance and
Flavor Materials, Wiley-VCH, Weinheim, Germany, 5th edn, 2006;
(b) Y. Deng, Y.-W. Chin, H. Chai, W. J. Keller and A. D. Kinghorn,
J. Nat. Prod., 2007, 70, 2049; (c) K. R. Romins, G. A. Freeman,
L. T. Schaller, J. R. Cowan, S. S. Gonzales, J. H. Tidwell,
C. W. Andrews, D. K. Stammers, R. J. Hazen, R. G. Ferris,
S. A. Short, J. H. Chan and L. R. Boone, J. Med. Chem., 2006,
49, 727; (d) P. J. Masson, D. Coup, J. Millet and N. L. Brown,
J. Biol. Chem., 1994, 270, 2662.
2 A. Kotali and P. A. Harris, Org. Prep. Proced. Int., 2003, 35, 583.
3 (a) J. Magano and J. R. Dunetz, Chem. Rev., 2011, 111, 2177; (b) A. de
Meijere and F. Diederich, Metal-Catalyzed Cross-Coupling Reactions,
Wiley-VCH, Weinheim, 2004; (c) N. Miyaura, Cross-Coupling
Reactions: A Practical Guide, Springer, Berlin, 2004.
4 For recent reviews, see: (a) J. Cornella and I. Larrosa, Synthesis, 2012,
653; (b) N. Rodriguez and L. J. Goossen, Chem. Soc. Rev., 2011,
40, 5030.
5 For selected examples, see: (a) Z. Fu, S. Huang, W. Su and M. Hong,
Org. Lett., 2010, 12, 4992; (b) P. Forgione, M. C. Brochu, M. St-Onge,
K. H. Thesen, M. D. Bailey and F. Bilodeau, J. Am. Chem. Soc., 2006,
128, 11350; (c) A. G. Myers, D. Tanaka and M. R. Mannion, J. Am.
Chem. Soc., 2002, 124, 11250.
6 For selected examples, see: (a) F. Zhang and M. F. Greaney, Angew.
Chem., Int. Ed., 2010, 49, 2768; (b) C. Wang, I. Piel and F. Glorius,
J. Am. Chem. Soc., 2009, 131, 4194.
Scheme 2 Postulated reaction mechanism.
Meanwhile, a-keto acids 2j and 2k with the naphthyl moiety also
participated in the acylation process with a high reactivity. Finally,
ortho-substituted phenylglyoxylic acid and heterocyclic a-keto acid
were also found to be favored under this catalytic system to afford
the corresponding products 4l and 4m in high yields.
7 For selected examples, see: (a) L. J. Goossen, N. Rodriguez and
C. Linder, J. Am. Chem. Soc., 2008, 130, 15248; (b) L. J. Goossen,
G. Deng and L. M. Levy, Science, 2006, 313, 662.
8 J. Wang, Z. Cui, Y. Zhang, H. Li, L.-M. Wu and Z. Liu, Org. Biomol.
Chem., 2011, 9, 663.
9 For a recent review on catalytic acylation of sp2 C–H bonds, see:
C. Pan, X. Jia and J. Cheng, Synthesis, 2012, 677.
To evaluate the scope of present catalytic reaction, we expanded
our substrate scope from ketoximes to aldoximes (Scheme 1). To our
pleasure, benzaldehyde O-methyl oximes with electron-neutral and
withdrawing substituents (5a and 5b) were coupled with phenyl-
glyoxylic acid (2a) under the above optimal conditions, albeit in
slightly decreased reactivity. Further detailed optimizations for the
coupling of aldoximes and a-keto acids are in progress.
Although a reaction mechanism is not clear at this stage, it
is believed that this transformation begins with the ortho-
palladation of acetophenone O-methyl oxime (1d) with
Pd(OAc)2 to provide the 5-membered palladacycle I, which
can be subsequently reacted with a-keto acid to afford cyclo-
palladated complex II (Scheme 2). Decarboxylation of cyclopal-
10 (a) X. Jia, S. Zhang, W. Wang, F. Luo and J. Cheng, Org. Lett., 2009,
´
11, 3120; (b) O. Basle, J. Bidange, Q. Shuai and C.-J. Li, Adv. Synth.
´
Catal., 2010, 352, 1145; (c) F. Xiao, Q. Shuai, F. Zhao, O. Basle,
G. Deng and C.-J. Li, Org. Lett., 2011, 13, 1614.
11 (a) J. Park, E. Park, A. Kim, Y. Lee, K.-W. Chi, J. H. Kwak, Y. H. Jung
and I. S. Kim, Org. Lett., 2011, 13, 4390; (b) S. Sharma, E. Park, J. Park
and I. S. Kim, Org. Lett., 2012, 14, 906.
12 (a) C.-W. Chan, Z. Zhou, A. S. C. Chan and W.-Y. Yu, Org. Lett., 2010,
12, 3926; (b) Y. Yang, B. Zhou and Y. Li, Adv. Synth. Catal., 2012,
354, 2916.
13 (a) Y. Wu, B. Li, F. Mao, X. Li and F. Y. Kwong, Org. Lett., 2011,
13, 3258; (b) C.-W. Chan, Z. Zhou and W.-Y. Yu, Adv. Synth. Catal.,
2011, 353, 2999; (c) C. Li, L. Wang, P. Li and W. Zhou, Chem.–Eur. J.,
2011, 17, 10208.
14 B. Zhou, Y. Yang and Y. Li, Chem. Commun., 2012, 48, 5163.
´
15 L. J. Goossen, F. Rudolphi, C. Oppel and N. Rodrıguez, Angew.
Chem., Int. Ed., 2008, 47, 3043.
ladated complex II followed by reductive elimination provides 16 (a) P. Fang, M. Li and H. Ge, J. Am. Chem. Soc., 2010, 132, 11898;
(b) M. Li and H. Ge, Org. Lett., 2010, 12, 3464.
17 H. Wang, L.-N. Guo and X.-H. Duan, Org. Lett., 2012, 14, 4358.
18 For recent selected examples, see: (a) T. K. Hyster and T. Rovis,
our desired product 3d. Finally, the regenerated Pd(0) catalyst
can be reoxidized to the active Pd(II) catalyst with (NH)4S2O8.
Although our proposed reaction mechanism is based on Pd(0)
and Pd(II) catalytic cycles, the alternative reaction mechanisms
including Pd(II/III)19 and/or Pd(II/IV)20 catalytic cycles are also
reasonable to consider under strong oxidation conditions.
In summary, we described a Pd-catalyzed decarboxylative
ortho-acylation of O-methyl ketoximes with a-keto acids under
ammonium persulfate as a convenient oxidant via C–H bond
Chem. Commun., 2011, 47, 11846; (b) A. S. Tsai, M. Brasee,
R. G. Bergman and J. A. Ellman, Org. Lett., 2011, 13, 540;
(c) V. S. Thirunavukkarasu and C.-H. Cheng, Chem.–Eur. J., 2011,
17, 14723.
19 D. C. Power, M. A. L. Geibel, J. E. M. N. Klein and T. Ritter, J. Am.
Chem. Soc., 2009, 131, 17050.
20 (a) C. F. Rosewall, P. A. Sibbald, D. V. Liskin and F. E. Michael, J. Am.
Chem. Soc., 2009, 131, 9488; (b) P. A. Sibbald, C. F. Rosewall,
R. D. Swartz and F. E. Michael, J. Am. Chem. Soc., 2009, 131, 15945.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 925--927 927