Organic & Biomolecular Chemistry
Communication
I. Hollander, S. Kim, S. Lombardi, K. Park, R. Mallon and
A. M. Gilbert, Bioorg. Med. Chem. Lett., 2010, 20, 2586;
(c) M. Sisa, D. Pla, M. Altuna, A. Francesch, C. Cuevas,
F. Albericio and M. Alvarez, J. Med. Chem., 2009, 52, 6217;
(d) M. A. Colucci, P. Reigan, D. Siegel, A. Chilloux, D. Ross
and C. J. Moody, J. Med. Chem., 2007, 50, 5780; (e) N. Fujii,
J. J. Haresco, K. A. P. Novak, D. Stokoe, I. D. Kuntz and
R. K. Guy, J. Am. Chem. Soc., 2003, 125, 12074; (f) J. F. Sanz-
Cervera and R. M. Williams, J. Am. Chem. Soc., 2002, 124,
2556; (g) L. Canoira, J. Gonzalo Rodriguez, J. B. Subirats,
J. A. Escario, I. Jimenez and A. R. Martinez-Fernandez,
Eur. J. Med. Chem., 1989, 24, 39.
Fig. 1 Monitoring rhodium catalysed triazole decomposition via proton
2 (a) P. N. James and H. R. Snyder, Org. Synth., 1959, 39, 30;
(b) G. F. Smith, J. Chem. Soc., 1954, 3842; (c) F. T. Tyson and
J. T. Shaw, J. Am. Chem. Soc., 1952, 74, 2273;
(d) A. C. Shabica, E. E. Howe, J. B. Ziegler and M. Tishler,
J. Am. Chem. Soc., 1946, 68, 1156.
3 (a) W. J. Boyd and W. Robson, Biochem. J., 1935, 29, 555;
(b) A. Ellinger and C. Flamand, Z. Phys. Chem., 1908, 55, 8;
(c) A. Ellinger, Ber., 1906, 39, 2515.
4 (a) X. Li, X. Gu, Y. Li and P. Li, ACS Catal., 2014, 4, 1897;
(b) H. Fei, J. Yu, Y. Jiang, H. Guo and J. Cheng, Org. Biomol.
Chem., 2013, 11, 7092; (c) J. Chen, B. Liu, D. Liu, S. Liu and
J. Cheng, Adv. Synth. Catal., 2012, 354, 2438.
NMR.
4-MeO-benzyl anilinyl triazole 3l. Aromaticity extended
2-naphthalenyl indole 4p was obtained from 3p in a much
higher yield than the corresponding 2-phenyl indole 4j from 3j
(63% vs. 38%). Moreover, the higher yields in general for the
former series than for the latter ones might reflect both steric
and statistical effects. Tetracyclic aldehyde 4q was easily pre-
pared in 61% yield by using triazole 3q as the substrate.
1
The reaction of triazole 3p in CDCl3 was monitored by H
NMR for more information (Fig. 1). Peaks a and b almost dis-
appeared when the mixture was heated at 80 °C under N2 for
5 hours, indicating that triazole 3p decomposed completely at
this point. Along the reaction course, distinct new peaks d and
e emerged and grew (Fig. 1a–c). Flash column chromatography
of this reaction mixture delivered a semi-purified product
which was assigned as indolyl tosylimine 6p based on 1H NMR
analysis (Fig. 1d). The direct observation of indole 6p in the
reaction mixture rather than its non-aromatic precursor, the
corresponding indoline intermediate, suggests an instant
in situ dehydrogenative aromatization after a carbene C–H
insertion event.
5 (a) S. Zhu, A. Das, L. Bui, H. Zhou, D. P. Curran and
M. Rueping, J. Am. Chem. Soc., 2013, 135, 1823;
(b) C.-Y. Wu, M. Hu, Y. Liu, R.-J. Song, Y. Lei, B.-X. Tang,
R.-J. Li and J.-H. Li, Chem. Commun., 2012, 48, 3197.
6 T. Horneff, S. Chuprakov, N. Chernyak, V. Gevorgyan and
V. V. Fokin, J. Am. Chem. Soc., 2008, 130, 14972.
7 (a) H. M. L. Davies and J. S. Alford, Chem. Soc. Rev., 2014,
43, 5151; (b) P. Anbarasan, D. Yadagiri and S. Rajasekar,
Synthesis, 2014, 3004; (c) B. Chattopadhyay and
V. Gevorgyan, Angew. Chem., Int. Ed., 2012, 51, 862;
(d) A. V. Gulevich and V. Gevorgyan, Angew. Chem., Int. Ed.,
2013, 52, 1371.
In conclusion, 2-(N-Alkyl-N-benzyl)-anilinyl triazoles have
been used as facile starting materials for the synthesis of
N-alkyl-2-aryl-indole-3-carbaldehydes. Triazoles with an electron
donating group on both aromatic rings usually gave higher
yields than triazoles with an electron withdrawing group. This
method features a rhodium catalyzed C–H functionalization of
benzyl aromatic amine and a dehydrogenative aromatization.
The authors wish to thank the Natural Science Foundation
of China (21402014 and 21272077), the Natural Science Foun-
dation of Jiangsu Province (BK20131143), the Priority Aca-
demic Program Development of Jiangsu Higher Education
Institutions (PADA), and Jiangsu Key Laboratory of Advanced
Catalytic Materials and Technology (BM2012110).
8 (a) Y.-S. Zhang, X.-Y. Tang and M. Shi, Chem. Commun.,
2014, 50, 15971; (b) H. Shen, J. Fu, J. Gong and Z. Yang,
Org. Lett., 2014, 16, 5588; (c) S. Kim, J. Mo, J. Kim, T. Ryu
and P. H. Lee, Asian J. Org. Chem., 2014, 3, 926; (d) A. Boyer,
Org. Lett., 2014, 16, 5878; (e) J. Fu, H. Shen, Y. Chang, C. Li,
J. Gong and Z. Yang, Chem. – Eur. J., 2014, 20, 12881;
(f) T. Miura, T. Nakamuro, C.-J. Liang and M. Murakami,
J. Am. Chem. Soc., 2014, 136, 15905; (g) X. Ma, S. Pan,
H. Wang and W. Chen, Org. Lett., 2014, 16, 4554;
(h) S. Park, W.-S. Yong, S. Kim and P. H. Lee, Org. Lett.,
2014, 16, 4468; (i) D. J. Lee, H. S. Han, J. Shin and E. J. Yoo,
J. Am. Chem. Soc., 2014, 136, 11606; ( j) E. E. Schultz,
V. N. G. Lindsay and R. Sarpong, Angew. Chem., Int. Ed.,
2014, 53, 9904; (k) R.-Q. Ran, J. He, S.-D. Xiu, K.-B. Wang
and C.-Y. Li, Org. Lett., 2014, 16, 3704; (l) J. S. Alford and
H. M. L. Davies, J. Am. Chem. Soc., 2014, 136, 10266;
(m) B. Rajagopal, C.-H. Chou, C.-C. Chung and P.-C. Lin,
Org. Lett., 2014, 16, 3752; (n) F. Medina, C. Besnard and
J. Lacour, Org. Lett., 2014, 16, 3232; (o) K. Chen, Z.-Z. Zhu,
Y.-S. Zhang, X.-Y. Tang and M. Shi, Angew. Chem., Int. Ed.,
Notes and references
1 (a) D. Kumar, N. M. Kumar, K. Akamatsu, E. Kusaka,
H. Harada and T. Ito, Bioorg. Med. Chem. Lett., 2010, 20,
3916; (b) M. G. Bursavich, N. Brooijmans, L. Feldberg,
This journal is © The Royal Society of Chemistry 2015
Org. Biomol. Chem.