64
Lee et al.
18. S. H. Hsiao, The effect of recombinant porcine interleukin-2 on the immune response
of porcine inactivated viral vaccines. M. S. thesis, National Taiwan University, Taipei,
Republic of China (1996).
19. B. Morris, T. Gray, and S. MacNeil, Evidence for chromium acting as an essential
trace element in insulin-dependent glucose uptake in cultured mouse myotubes, J.
Endocrinol. 144, 135–141 (1995).
20. M. M. Bradford, A rapid and sensitive method for the quantitation of microgram
quantities of protein, utilizing the principle of protein–dye binding, Anal. Biochem. 72,
248–254 (1976).
21. L. F. B. P. Costa Rosa, Y. Cury, and R. Curi, Effects of insulin, glucocorticoids and thy-
roid hormones on the activities of key enzymes of glycolysis, glutaminolysis, the
pentose–phosphate pathway and the Krebs cycle in rat macrophages, J. Endocrinol.
135, 213–219 (1992).
22. I. A. Rajkovic and R. Williams, Rapid microassays of phagocytosis, bacterial killing,
superoxide and hydrogen peroxide production by human neutrophils in vitro, J.
Immunol. Methods 78, 35–47 (1985).
23. SAS, SAS/STAT User’s Guide (Release 6.02), SAS Institute Inc., Cary, NC (1987).
24. G. W. Evans and D. J. Pouchnik, Composition and biological activity of chromium-
pyridine carboxylate complexes, J. Inorg. Biochem. 49, 177–187 (1993).
25. M. Fukuzumi, H. Shinomiyi, Y. Shimizu, K. Ohishi, and S. Utsumi, Endotoxin-
induced enhancement of glucose influx into murine peritoneal macrophages via
GLUT1, Infect. Immunol. 64, 108–112 (1996).
26. D. Daneman, B. Zinman, M. E. Elliot, P. J. Bilan, and A. Klip, Insulin-stimulated glu-
cose transport in circulating mononuclear cells from nondiabetic and IDDM subjects,
Diabetes 41, 227–234 (1992).
27. J. F. Hofert and K. L. Phillips, In vitro insulin-stimulated conversion of (U-14C) glu-
cose to 14CO2 by rat thymocytes, Endocrinology 102, 751–756 (1978).
28. D. Bagchi, M. Bagchi, J. Balmoori, X. Ye, and S. J. Stohs, Comparative induction of
oxidative stress in cultured J774A.1 macrophage cells by chromium picolinate and
chromium nicotinate, Res. Comm. Mol. Pathol. Pharm. 97, 335–346 (1997).
29. D. Bagchi, E. A. Hassoun, M. Bagchi, and S. J. Stohs, Chromium-induced excretion
of urinary lipid metabolites, DNA damage, nitric oxide production, and generation of
reactive oxygen species in Sprague–Dawleys rats, Comp. Biochem. Physiol. 110, C177–187
(1995).
30. E. A. Hassoun and S. J. Stohs, Chromium-induced production of reactive oxygen
species, DNA single-strand breaks, nitric oxide production, and lactate dehydroge-
nase leakage in J774A.1 cell cultures, J. Biochem. Toxicol. 10, 315–321 (1995).
31. G. Wu, S. Majumdar, J. Zhang, H. Lee, and C. J. Meininger, Insulin stimulates gly-
colysis and pentose cycle activity in bovine microvascular endothelial cells, Comp.
Biochem. Physiol. 108, 179–185 (1994).
32. G. S. Morris, D. L. Hasten, M. Hegsted, and L. K. Guidry, Chromium picolinate sup-
plementation improves cardiac metabolism, but not myosin isoenzyme distribution
in the diabetic heart, J. Nutr. Biochem. 7, 617–622 (1996).
33. A. R. Cross and O. T. G. Jones, Enzymic mechanisms of superoxide production,
Biochim. Biophys. Acta 1057, 281–298 (1991).
34. E. G. Offenbacher and F. X. Pi-Sunyer, Chromium in human nutrition, Annu. Rev.
Nutr. 8, 543–563 (1987).
35. B. Gulanowski, J. Swiatek, and H. Kozlowski, Impact of chromium ions on nucleo-
side triphosphates and nucleic acids, J. Inorg. Biochem. 48, 289–298 (1992).
Biological Trace Element Research
Vol. 77, 2000