Page 5 of 7
ACS Medicinal Chemistry Letters
D. Eichlisberger, S. Gaveriaux, and A.-S. Mangold for their
100
75
50
25
0
1
2
3
4
5
6
7
efforts towards developing and performing biochemical and
cellular assays, P. Ramseier and M. Vogelsanger for in vivo
pharmacology and G. Weckbecker for scientific guidance. We are
grateful to the MX beamline team at the Swiss Light Source (PSI
Villigen, Switzer-land) for outstanding support at the beamline
and Expose GmbH (Switzerland) for diffraction data collection.
ABBREVIATIONS
8
9
ADME, absorption, distribution, metabolism, and excretion; ATP,
adenosine triphosphate; BAV, bioavailability; BCR, B-cell
receptor; BMX, bone marrow X-linked tyrosine kinase; BTK,
Bruton’s tyrosine kinase; CD69, cluster of differentiation 69;
EGFR, epidermal growth factor receptor; ERBB2, receptor
tyrosine-protein kinase erbB-2; ERBB4, receptor tyrosine-protein
kinase erbB-4; ITK, interleukin-2-inducible T cell kinase; IgG,
Immunoglobulin G; JAK3, Janus kinase 3; OVA, ovalbumin;
PAMPA, parallel artificial membrane permeability assay; PH,
-25
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
//
1
4
8
1
-
-
13
14
15
rac
rac
Vehicle
Vehicle
Figure 6. BTK occupancy in rat spleen homogenate 5 h after a 10
mg kg-1 p.o. dose of compounds compared to the respective
vehicle control. Circles represent single animal values, lines
indicate average ± SD.
pleckstrin
homology;
PK/PD,
pharmacokinetic/pharmacodynamic; RLM, rat liver microsomes;
RPA, reverse passive Arthus reaction; SH3, Src homology 3;
SRC, proto-oncogene tyrosine-protein kinase Src; TEC, tyrosine-
protein kinase Tec; TXK, tyrosine-protein kinase TXK;
Finally, we confirmed the kinase selectivity of our
optimized inhibitors by testing 8 in a biochemical kinase panel
containing 60 kinases, including Cys-containing kinases
BMX, EGFR, ERBB2 and JAK3 (Supporting information). 8
showed an excellent profile providing a 40-fold selectivity
over BMX (BMX IC50 49 nM) and a >25’000 fold selectivity
for all other kinases tested.
REFERENCES
(1)
(2)
(3)
(4)
(5)
Robinson, D. R.; Wu, Y.-M.; Lin, S.-F. The Protein Tyrosine
Kinase Family of the Human Genome. Oncogene 2000, 19,
5548–5557.
Satterthwaite, A. B. Independent and Opposing Roles For Btk
and Lyn in B and Myeloid Signaling Pathways. J. Exp. Med.
1998, 188, 833–844.
Koprulu, A. D.; Ellmeier, W. The Role of Tec Family Kinases
in Mononuclear Phagocytes. Crit. Rev. Immunol. 2009, 29, 317–
333.
Mano, H. Tec Family of Protein-Tyrosine Kinases: An
Overview of Their Structure and Function. Cytokine Growth
Factor Rev. 1999, 10, 267–280.
In summary, we converted pyrrolopyrimidine-based
selective reversible inhibitors into a series of potent and
selective irreversible BTK inhibitors with in vivo activity.
Similar to what has in the meantime been published by
others,25 the combination of binding to an inactive
conformation of BTK with the covalent irreversible MoA
resulted in compounds with a high kinase selectivity even over
several closely-related Cys-containing kinases. In addition,
these compounds provided high BTK occupancy after oral
dosing, similar to 1. Due to the very high clearance of these
compounds, we decided to abandon this series in favor of an
alternative scaffold. This resulted in the discovery of a highly
potent and selective clinical candidate, which will be
described in due course.
Conley, M. E.; Dobbs, A. K.; Farmer, D. M.; Kilic, S.; Paris, K.;
Grigoriadou, S.; Coustan-Smith, E.; Howard, V.; Campana, D.
Primary
B
Cell Immunodeficiencies: Comparisons and
Contrasts. Annu. Rev. Immunol. 2009, 27, 199–227.
(6)
(7)
Mestas, J.; Hughes, C. C. W. Of Mice and Not Men: Differences
between Mouse and Human Immunology. J. Immunol. 2004,
172, 2731–2738.
Xu, D.; Kim, Y.; Postelnek, J.; Vu, M. D.; Hu, D.-Q.; Liao, C.;
Bradshaw, M.; Hsu, J.; Zhang, J.; Pashine, A.; Srinivasan, D.;
Woods, J.; Levin, A.; O’Mahony, A.; Owens, T. D.; Lou, Y.;
Hill, R. J.; Narula, S.; DeMartino, J.; Fine, J. S. RN486, a
Selective Bruton’s Tyrosine Kinase Inhibitor, Abrogates
Immune Hypersensitivity Responses and Arthritis in Rodents. J.
Pharmacol. Exp. Ther. 2012, 341, 90–103.
ASSOCIATED CONTENT
Supporting Information
Full descriptions of all biological assays and in vivo studies.
Kinase selectivity data. Crystallographic data collection and
refinement statistics for crystal structures. Experimental
procedures and characterization of compounds. The Supporting
Information is available free of charge on the ACS Publications
website.
(8)
Satterthwaite, A. B. Bruton’s Tyrosine Kinase, a Component of
B
Cell Signaling Pathways, Has Multiple Roles in the
Pathogenesis of Lupus. Front. Immunol. 2018, 8, 1–10.
Aw, A.; Brown, J. R. Current Status of Bruton’s Tyrosine
Kinase Inhibitor Development and Use in B-Cell Malignancies.
Drugs Aging 2017, 34, 509–527.
(9)
(10)
Zhang, Z.; Zhang, D.; Liu, Y.; Yang, D.; Ran, F.; Wang, M. L.;
Zhao, G. Targeting Bruton’s Tyrosine Kinase for the Treatment
of B Cell Associated Malignancies and Autoimmune Diseases:
Preclinical and Clinical Developments of Small Molecule
Inhibitors. Arch. Pharm. (Weinheim). 2018, 351, 1700369.
Honigberg, L. A.; Smith, A. M.; Sirisawad, M.; Verner, E.;
Loury, D.; Chang, B.; Li, S.; Pan, Z.; Thamm, D. H.; Miller, R.
A.; Buggy, J. J. The Bruton Tyrosine Kinase Inhibitor PCI-
32765 Blocks B-Cell Activation and Is Efficacious in Models of
Autoimmune Disease and B-Cell Malignancy. Proc. Natl. Acad.
Sci. 2010, 107, 13075–13080.
AUTHOR INFORMATION
Corresponding Author
* Tel: +41 79 310 6846. E-mail: robert.pulz@novartis.com
(11)
(12)
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
Médard, G.; Pachl, F.; Ruprecht, B.; Klaeger, S.; Heinzlmeir, S.;
Helm, D.; Qiao, H.; Ku, X.; Wilhelm, M.; Kuehne, T.; Wu, Z.;
Dittmann, A.; Hopf, C.; Kramer, K.; Kuster, B. Optimized
We thank E. Blum, O. Decoret, F. Gruber, J. Karrer, M.-L.
Manisse, W. Miltz, B. Niepold, F. Ossola, M. Regenscheit, G.
Rose, and S. Wildpreth for their synthetic support, P. Drueckes,
ACS Paragon Plus Environment