ChemComm
Communication
avoid intra-molecular charge transfer caused by the electro-donating
groups. Dye 1 exhibits long wavelength fluorescence with a large
Stokes shift, which makes it attractive for bio-imaging application,
and this research is underway in our laboratories.
J.W. acknowledges financial support from the SPORE (COY-15-
EWI-RCFSA/N197-1), BMRC-NMRC grant (no. 10/1/21/19/642),
and IMRE Core funding (IMRE/10-1P0509). K.-W.H. acknowledges
financial support from KAUST.
Notes and references
1 (a) E. J. Merino and K. M. Weeks, J. Am. Chem. Soc., 2005, 127, 12766;
(b) Q. Meng, D. H. Kim, X. Bai, L. Bi, N. J. Turro and J. Ju, J. Org.
Chem., 2006, 71, 3248; (c) C. Peters, A. Billich, M. Ghobrial,
K. Hoegenauer, T. Ullrich and P. Nussbaumer, J. Org. Chem., 2007,
72, 1842; (d) Z. Li and R. Bittman, J. Org. Chem., 2007, 72, 8376.
2 (a) S. Erten-Ela, M. D. Yilmaz, B. Icli, Y. Dede, S. Icli and E. U. Akkaya,
Org. Lett., 2008, 10, 3299; (b) T. Rousseau, A. Cravino, T. Bura, G. Ulrich,
R. Ziessel and J. Roncali, Chem. Commun., 2009, 1673; (c) D. Kumaresan,
R. P. Thummel, T. Bura, G. Ulrich and R. Ziessel, Chem.–Eur. J., 2009,
15, 6335; (d) S. Kolemen, M. Thelakkat and E. U. Akkaya, Org. Lett., 2010,
12, 3812; (e) S. Kolemen, O. A. Bozdemir, S. M. Nazeeruddin and
E. U. Akkaya, Chem. Sci., 2011, 2, 949.
Fig. 3 Calculated geometry and frontier molecular orbital profiles of 1, 2 and 3.
Hydrogen atoms are omitted for clarity.
for 3 were then calculated which are in agreement with their optical
band gaps estimated from the onset of the lowest energy absorption
band (2.40 eV for 4, 2.23 eV for 1, 1.76 eV for 2, 1.28 for 3).
3 (a) A. Loudet and K. Burgess, Chem. Rev., 2007, 107, 4891;
(b) R. Ziessel, G. Ulrich and A. Harriman, New J. Chem., 2007,
31, 496; (c) G. Ulrich, R. Ziessel and A. Harriman, Angew. Chem.,
Int. Ed., 2008, 47, 1184.
In order to gain better insight into the molecular geometries,
electronic structures, and optoelectronic properties, time-dependent
density functional theory (TDDFT at B3LYP/6-31G*) calculations
were performed for compounds 1–3. The optimized structures and
frontier molecular orbital profiles are shown in Fig. 3. For molecules
1 and 2, the phenyl substitutions at meso- and b-positions are nearly
perpendicular to the BODIPY plane, and the HOMO and LUMO are
homogenously delocalized along the fused BODIPY system. 3 shows
a nearly planar structure. The HOMO coefficients are mainly
delocalized on the indole-fragment and the fused benzene ring at
the zigzag edge, while the LUMO coefficients are homogenously
dispersed along the whole conjugation system. The same tendency
as the cyclic voltammetry was observed for the calculated HOMO
and LUMO energy levels of 1, 2 and 3. The HOMO energy levels of 1
(À5.47 eV) and 2 (À5.40 eV) are almost the same, while a much
lower LUMO level than that of 1 (À2.79 eV) was calculated for 2
(À3.21 eV). Meanwhile, a higher HOMO energy level (À5.19 eV)
and a lower LUMO energy level (À3.25 eV) than those of 1 were
also calculated for 3. The computed absorption spectrum of 3 is in
good agreement with the experimental results, with the calculated
absorption maxima at 930.5 nm (HOMO - LUMO), 536.8 nm
(HOMO À 1 - LUMO) and 401.1 nm (HOMO À 2 - LUMO) (ESI†).
In summary, BODIPY derivatives with one or two benzene rings
fused at different positions (zigzag edge and/or b bond) were
successfully prepared for the first time using new synthetic methods.
The impacts of benzene-ring fusion at different positions were
investigated by absorption/emission spectroscopy and electrochemi-
4 (a) M. Wada, S. Ito, H. Uno, T. Urano and Y. Urano, Tetrahedron Lett.,
¨
2001, 42, 6711; (b) Z. Shen, H. Rohr, K. Rurack, H. Uno, M. Spieles,
B. Schulz, G. Reck and N. Ono, Chem.–Eur. J., 2004, 10, 4853;
(c) L. Jiao, C. Yu, M. Liu, Y. Wu, K. Cong, T. Meng, Y. Wang and
E. Hao, J. Org. Chem., 2010, 75, 6035.
5 (a) A. Burghart, H. Kim, M. B. Welch, L. H. Thoresen, J. Reibenspies,
K. Burgess, F. Bergstrorm and L. B. A. Johansson, J. Org. Chem.,
¨
1999, 64, 7813; (b) Y.-H. Yu, A. B. Descalzo, Z. Shen, H. Rohr,
Q. Liu, Y.-W. Wang, M. Spieles, Y. Z. Li, K. Rurack and X.-Z. You,
Chem.–Asian J., 2006, 1, 176; (c) T. Rohand, M. Baruah, W. Qin,
N. Boens and W. Dehaen, Chem. Commun., 2006, 266; (d) M. Baruah,
W. Qin, R. A. L. VallQe, D. Beljonne, T. Rohand, W. Dehaen and
N. Boens, Org. Lett., 2005, 7, 4377.
6 (a) W. Zhao and E. M. Carreira, Angew. Chem., Int. Ed., 2005, 44, 1677;
(b) W. Zhao and E. M. Carreira, Chem.–Eur. J., 2006, 12, 7254;
(c) S. O. McDonnell and D. F. O’Shea, Org. Lett., 2006, 8, 3493.
7 (a) C. Jiao, K.-W. Huang and J. Wu, Org. Lett., 2011, 13, 632;
(b) C. Jiao, L. Zhu and J. Wu, Chem.–Eur. J., 2011, 17, 6610;
(c) L. Zeng, C. Jiao, X. Huang, K.-W. Huang, W.-S. Chin and J. Wu,
Org. Lett., 2011, 13, 6026.
8 (a) J. Chen, J. Reibenspies, A. Derecskei-Kovacs and K. Burgess,
Chem. Commun., 1999, 2501; (b) J. Chen, A. Burghart, A. Derecskei-
Kovacs and K. Burgess, J. Org. Chem., 2000, 65, 2900; (c) K. Umezawa,
Y. Nakamura, H. Makino, D. Citterio and K. Suzuki, J. Am. Chem.
Soc., 2008, 130, 1550; (d) K. Umezawa, A. Matsui, Y. Nakamura,
D. Citterio and K. Suzuki, Chem.–Eur. J., 2009, 15, 1096; (e) A. Matsui,
K. Umezawa, Y. Shindo, T. Fujii, D. Citterio, K. Oka and K. Suzuki,
Chem. Commun., 2011, 47, 10407; ( f ) S. G. Awuah, J. Polreis,
V. Biradar and Y. You, Org. Lett., 2011, 13, 3884; (g) Y. Hayashi,
N. Obata, S. Seki, Y. Kureishi, S. Saito, S. Yamaguchi and H. Shinokubo,
Org. Lett., 2012, 14, 866.
9 (a) C. Zhao and J. Cao, J. Phys. Chem. B, 2011, 115, 642; (b) X. Gu,
C. Liu and Y. Zhu, J. Agric. Food Chem., 2011, 59, 11935.
cal measurements assisted by DFT calculations. Compound 2 10 Y. Gabe, Y. Urano, K. Kikuchi, H. Kojima and T. Nagano, J. Am.
Chem. Soc., 2004, 126, 3357.
11 C. Jones and T. Arez, J. Org. Chem., 1979, 37, 3622.
12 K. Dittmann and U. Pindur, Arch. Pharm., 1985, 318, 340.
represents the first example of dibenzo[b,g]-fused BODIPY, and the
synthetic method likely can be applied for the synthesis of other
[b,g]-fused BODIPYs. Dye 3 shows NIR absorption due to the highly 13 G. Abbiati, V. Canevari, E. Rossi and A. Ruggeri, Synth. Commun.,
2005, 35, 1845.
extended p-conjugation, and the new synthetic approach opens the
door to introducing an aromatic unit without an electron-donating
14 J. Lee, N. Kang, Y. K. Kim, A. Samanta, S. Feng, H. K. Kim,
M. Vendrell, J. H. Park and Y. Chang, J. Am. Chem. Soc., 2009,
group onto the zigzag edge of the BODIPY core, which is essential to
131, 10077.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 1217--1219 1219