[O2]•‑. With our continuous investigations on photochemical
reactions,9 we envisioned that the resulted [O2]•‑ could act as
an oxidant to selectively cleave CꢀC bond of the enamines
formed in situ from aldehydes and secondary amines enabled
by photoredox catalysts (Scheme 1, eq 3). Herein we report
what we have achieved on the realization of the strategy for
the direct oxidative cleavage of CꢀC bond to ketones using
visible-light irradiation and air as the source of the oxidant.
This new photocatalytic approach is particularly attractive
because mild reaction conditions, such as visible light, open to
air, and ambient temperature are involved.
Scheme 1. Oxidative CꢀC Bond Cleavage Reactions
Our initial investigation was carried out on the reaction
of 1a with 1 equiv piperidine in the presence of 5 mol %
Ru(bpy)3Cl2 in CH3CN under irradiation with a 15 W
fluorescent light bulb. To our delight, the desired CꢀC
cleavage product 2a was obtained in 29% yield after
irradiation for 2 h (Table 1, entry 1). Such a result, to the
best of our knowledge, presents the first example of
oxidative decarbonylation using a visible-light photocata-
lytic strategy and encourages us to explore the optimal
reaction conditions. Therefore 3 equiv piperidine and same
reaction time were employed which led to the yield in-
creased to 86% (Table 1, entry 2). If the reaction time was
prolonged to 5 h, excellent yield of 95% was obtained
(Table 1, entry 6). Further studies indicated that second
amine had a significant effect on the reaction efficiency
(Table 1, entries 5ꢀ11). Among all tested amines, piper-
idine showed the best transformation to product 2a.
The reaction proceeded equally well in DMF, CH3CN
and CH3OH (Table 1, entries 3, 4, 6 and 7) producing the
3
to absorb visible light, Photocatalysts such as Ru(bpy)3Cl2
were employed through electron-transfer processes to sensi-
tize organic molecules to carry out required photochemical
reactions. Since the pioneering work from the groups of
MacMillan,4 Stephenson,5 Yoon6 and others7 demonstrated
the utility of Ru(bpy)3Cl2 and its application to various
visible light induced synthetic transformations, the applica-
tion of visible light photoredox catalysis has emerged as a
growing field in organic chemistry and successfully applied in
a variety of reactions.8 Among these advances, air was usually
employed as an oxidant to regenerate Ru2þ from Ruþ in the
reductive quenching cycle and result in the formation of
(7) (a) Kalyani, D.; McMurtrey, K. B.; Neufeldt, S. R.; Sanford,
M. S. J. Am. Chem. Soc. 2011, 133, 18566. (b) Andrews, R. S.; Becker,
ꢀ
J. J.; Gagne, M. R. Angew. Chem., Int. Ed. 2010, 49, 7274. (c) Andrews,
(3) Oxidative quenching of Ru(bpy)32þ* provides Ru(bpy)33þ, a
strong oxidant (1.29 V vs SCE, in CH3CN), while reductive quenching
provides Ru(bpy)3þ, a strong reducing agent (ꢀ1.33 V vs SCE in
CH3CN).
(4) (a) McNally, A.; Prier, C. K.; MacMillan, D. W. C. Science 2011,
334, 1114. (b) Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322,
77. (c) Nagib, D. A.; Scott, M. E.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2009, 131, 10875. (d) Shih, H. W.; Vander Wal, M. N.; Grange,
R. L.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 13600. (e)
Nagib, D. A.; MacMillan, D. W. C. Nature 2011, 480, 224. (f) Pham,
P. V.; Nagib, D. A.; MacMillan, D. W. C. Angew. Chem., Int. Ed. 2011,
50, 6119.
ꢀ
R. S.; Becker, J. J.; Gagne, M. R. Org. Lett. 2011, 13, 2406. (d) Rueping,
M.; Vial, C.; Koenigs, R. M.; Poscharny, K.; Fabry, D. C. Chem.
Commun. 2011, 47, 2360. (e) Rueping, M.; Zhu, S.; Koenigs, R. M.
Chem. Commun. 2011, 47, 8679. (f) Rueping, M.; Leonori, D.; Poisson,
T. Chem. Commun. 2011, 47, 9615. (g) Xuan, J.; Cheng, Y.; An, J.; Lu,
L. Q.; Zhang, X. X.; Xiao, W. J. Chem. Commun. 2011, 47, 8337. (h) Zou,
Y. Q.; Lu, L. Q.; Fu, L.; Chang, N. J.; Rong, J.; Chen, J. R.; Xiao, W. J.
Angew. Chem., Int. Ed. 2011, 50, 7171. (i) Yasu, Y.; Koike, T.; Akita, M.
Angew. Chem., Int. Ed. 2012, 51, 9567. (j) Kohls, P.; Jadhav, D.; Pandey,
G.; Reiser, O. Org. Lett. 2012, 14, 672. (k) Maji, T.; Karmakar, A.;
Reiser, O. J. Org. Chem. 2011, 76, 736. (l) Zou, Y. Q.; Chen, J. R.; Liu,
X. P.; Lu, L. Q.; Davis, R. L.; Jorgensen, K. A.; Xiao, W. J. Angew.
Chem., Int. Ed. 2012, 51, 784. (m) Ju, X. H.; Liang, Y.; Jia, P. J.; Li,
W. F.; Yu, W. Org. Biomol. Chem. 2012, 10, 498. (n) Rueping, M.;
Koenigs, R. M.; Poscharny, K.; Fabry, D. C.; Leonori, D.; Vila, C.
Chem.;Eur. J. 2012, 18, 5170. (o) Cai, S.; Zhao, X.; Wang, X.; Liu, Q.;
Li, Z.; Wang, D. Z. Angew. Chem., Int. Ed. 2012, 51, 8050. (p) Maity, S.;
Zheng, N. Angew. Chem., Int. Ed. 2012, 51, 9562. (q) DiRocco, D. A.;
Rovis, T. J. Am. Chem. Soc. 2012, 134, 8094. (r) Ye, Y.; Sanford, M. S.
J. Am. Chem. Soc. 2012, 134, 9034.
(5) (a) Dai, C.; Narayanam, J. M. R.; Stephenson, C. R. J. Nat. Chem.
ꢀ
ꢀ
2011, 3, 140. (b) Condie, A. G.; Gonzalez-Gomez, J. C.; Stephenson,
C. R. J. J. Am. Chem. Soc. 2010, 132, 1464. (c) Narayanam, J. M. R.;
Tucker, J. W.; Stephenson, C. R. J. J. Am. Chem. Soc. 2009, 131, 8756. (d)
Freeman, D. B.; Furst, L.; Condie, A. G.; Stephenson, C. R. J. Org. Lett.
2012, 14, 94. (e) Tucker, J. W.; Narayanam, J. M. R.; Shah, P. S.;
Stephenson, C. R. J. Chem. Commun. 2011, 47, 5040. (f) Tucker, J. W.;
Narayanam, J. M. R.; Krabbe, S. W.; Stephenson, C. R. J. Org. Lett. 2010,
12, 368. (g) Furst, L.; Matsuura, B. S.; Narayanam, J. M. R.; Tucker, J. W.;
Stephenson, C. R. J. Org. Lett. 2010, 12, 3104. (h) Tucker, J. W.; Nguyen,
J. D.; Narayanam, J. M. R.; Krabbe, S. W.; Stephenson, C. R. J. Chem.
Commun. 2010, 46, 4985. (i) Tucker, J. W.; Stephenson, C. R. J. Org. Lett.
2011, 13, 5468. (j) Furst, L.; Narayanam, J. M. R.; Stephenson, C. R. J.
Angew. Chem., Int. Ed. 2011, 50, 9655. (k) Nguyen, J. D.; Tucker, J. W.;
Konieczynska, M. D.; Stephenson, C. R. J. J. Am. Chem. Soc. 2011, 133,
4160.
(6) (a) Lin, S.; Ischay, M. A.; Fry, C. G.; Yoon, T. P. J. Am. Chem.
Soc. 2011, 133, 19350. (b) Ischay, M. A.; Lu, Z.; Yoon, T. P. J. Am.
Chem. Soc. 2010, 132, 8572. (c) Ischay, M. A.; Anzovino, M. E.; Du, J.;
Yoon, T. P. J. Am. Chem. Soc. 2008, 130, 12886. (d) Hurtley, A. E.;
Cismesia, M. A.; Ischay, M. A.; Yoon, T. P. Tetrahedron 2011, 67, 4442.
(e) Du, J.; Espelt, L. R.; Guzei, I. A.; Yoon, T. P. Chem. Sci. 2011, 2,
2115. (f) Du, J.; Yoon, T. P. J. Am. Chem. Soc. 2009, 131, 14604.
(8) For recent reviews on photoredox catalysis, see: (a) Fagnoni, M.;
Dondi, D.; Ravelli, D.; Albini, A. Chem. Rev. 2007, 107, 2725. (b)
Ravelli, D.; Dondi, D.; Fagnoni, M.; Albini, A. Chem. Soc. Rev. 2009,
38, 1999. (c) Melchiorre, P. Angew. Chem., Int. Ed. 2009, 48, 1360. (d)
Zeitler, K. Angew. Chem., Int. Ed. 2009, 48, 9785. (e) Yoon, T. P.; Ischay,
M. A.; Du, J. Nat. Chem. 2010, 2, 527. (f) Narayanam, J. M. R.;
ꢀ
Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102. (g) Telpy, F. Collect.
Czech. Chem. Commun. 2011, 76, 859. (h) Tucker, J. W.; Stephenson,
C. R. J. J. Org. Chem. 2012, 77, 1617. (i) Shi, L.; Xia, W. Chem. Soc. Rev.
2012, 21, 7687.
(9) (a) Zhao, G. L.; Yang, C.; Guo, L.; Sun, H. N.; Chen, C.; Xia,
W. J. Chem. Commun. 2012, 48, 2337. (b) Zhao, G. L.; Yang, C.; Guo, L.;
Sun, H. N.; Lin, R.; Xia, W. J. J. Org. Chem. 2012, 77, 6302. (c) Xia, W.;
Shao, Y.; Gui, W.; Yang, C. Chem. Commun. 2011, 47, 11098. (d) Shao,
Y.; Yang, C.; Gui, W.; Liu, Y.; Xia, W. Chem. Commun. 2012, 48, 3560.
B
Org. Lett., Vol. XX, No. XX, XXXX