Zeng et al.
FULL PAPER
OH
OH O
1)
2)
NaClO2, NaH2PO4,
CHO
CHO
2-methyl-2-butene
OEt
t-BuOH, r.t.
O2N
NO2
H SO (cat.)/EtOH
2
4reflux
4 (81% ee)
3a (81% ee)
70%, 2 steps
OH
OH
O
O
DCM, r.t.
R
R
Ph3P
+
O2N
O2N
5a: R = OEt
5b: R = Me
3a (77% ee)
6a: R = OEt (45%, 76% ee)
6b: R = Me (41%, 77% ee)
Chem. 2011, 29, 2732.
The thus obtained MBH adducts 3 could be readily
transformed to other building blocks. For example, the
aldehyde group of product 3a could be oxidized to give
the correspongding product 4. By comparing the optical
rotation of product 4 with literature report,[9] the abso-
lute configuration of product 3a was determined to be R,
and those of other adducts were tentatively assigned by
analogy. The Wittig reaction of product 3a and ylide 5
could give multifunctional products 6 in moderate yield,
without loss of enantioselectivity.
[2] For selected examples of catalytic asymmetric MBH reactions, see:
(a) Oishi, T.; Oguri, H.; Hirama, M. Tetrahedron: Asymmetry 1995, 6,
1241; (b) Markó, I. E.; Giles, P. R.; Hindley, N. J. Tetrahedron 1997,
53, 1015; (c) Barrett, A. G. M.; Cook, A. S.; Kamimura, A. Chem.
Commun. 1998, 2533; (d) Shi, M.; Jiang, J. K. Tetrahedron: Asym-
metry 2002, 13, 1941; (e) Yang, K. S.; Lee, W. D.; Pan, J. F.; Chen,
K. J. Org. Chem. 2003, 68, 915; (f) McDougal, N. T.; Schaus, S. E. J.
Am. Chem. Soc. 2003, 125, 12094; (g) Imbriglio, J. E.; Vasbinder, M.
M.; Miller, S. J. Org. Lett. 2003, 5, 3741; (h) Krishna, P. R.; Kannan,
V.; Reddy, P. V. N. Adv. Synth. Catal. 2004, 346, 603; (i) Hayashi, Y.;
Tamura, T.; Shoji, M. Adv. Synth. Catal. 2004, 346, 1106; (j)
Sohtome, Y.; Tanatani, A.; Hashimoto, Y.; Nagasawa, K.
Tetrahedron Lett. 2004, 45, 5589; (k) Aggarwal, V. K.; Fulford, S. Y.;
Lloyd-Jones, G. C. Angew. Chem., Int. Ed. 2005, 44, 1706; (l)
Matsui, K.; Takizawa, S.; Sasai, H. Tetrahedron Lett. 2005, 46, 1943;
(m) Ito, K.; Nishida, K.; Gotanda, T. Tetrahedron Lett. 2007, 48,
6147; (n) Sohtome, Y.; Takemura, N.; Takagi, R.; Hashimoto, Y.;
Nagasawa, K. Tetrahedron 2008, 64, 9423; (o) Cabrera, S.; Alemán,
J.; Bolze, P.; Bertelsen, S.; Jørgensen, K. A. Angew. Chem., Int. Ed.
2008, 47, 121; (p) Senapati, B. K.; Hwang, G. S.; Lee, S.; Ryu, D. H.
Angew. Chem., Int. Ed. 2009, 48, 4398; (q) Bugarin, A.; Connell, B.
T. Chem. Commun. 2010, 2644; (r) Gong, J. J.; Yuan, K.; Song, H.
L.; Wu, X. Y. Tetrahedron 2010, 66, 2439; (s) Guan, X. Y.; Wei, Y.;
Shi, M. Chem. Eur. J. 2010, 16, 13617; (t) Shi, M.; Liu, X. G. Org.
Lett. 2008, 10, 1043; (u) Shi, M.; Chen, L. H. Chirality 2007, 19,
124; (v) Yang, W.; Sha, F.; Zhang, X.; Yuan, K.; Wu, X. Chin. J.
Chem. 2012, 30, DOI:10.1002/cjoc. 201200740; (w) Gao, J.-L.; Liu,
Y.-K.; Xue, S. Chin. J. Chem. 2008, 26, 1689.
Conclusions
In conclusion, we have developed the first example
of catalytic asymmetric Morita-Baylis-Hillman reaction
of acrolein with aromatic aldehydes, which affords
highly functional products with an aldehyde group for
versatile elaboration. The combination of Hatakeyama’s
catalyst β-isocupreidine with 2,6-dimethoxybenzoic
acid has been identified as a useful catalyst system for
the reaction, which gives the desired products in up to
81% ee. The development of more efficient system to
improve the reactivity, enantioselectivity and substrate
scope is now in progress in our laboratory.
Acknowledgement
[3] (a) Iwabuchi, Y.; Nakatani, M.; Yokoyama, N.; Hatakeyama, S. J.
Am. Chem. Soc. 1999, 121, 10219; (b) Nakano, A.; Takahashi, K.;
Ishihara, J.; Hatakeyama, S. Org. Lett. 2006, 8, 5357.
The financial support from the 973 program
(2011CB808600), NSFC (20902025), Specialized Re-
search Fund for the Doctoral Program of Higher Educa-
tion (20090076120007), Innovation Program of SMEC
(12ZZ046), and the Fundamental Research Funds for
the Central Universities (East China Normal University
11043) are highly appreciated.
[4] For the reaction of acrolein with aldimines, see: (a) Matsui, K.; Ta-
kizawa, S.; Sasai, H. J. Am. Chem. Soc. 2005, 127, 3680; (b) Shi, M.;
Chen, L. H.; Li, C. Q. J. Am. Chem. Soc. 2005, 127, 3790; (c) Shi,
M.; Xu, Y. M.; Shi, Y. L. Chem. Eur. J. 2005, 11, 1794; (d) Abermil,
N.; Masson, G.; Zhu, J. Adv. Synth. Catal. 2010, 352, 656; For a
review on aza-MBH reaction, see: (e) Masson, G.; Housseman, C.;
Zhu, J. Angew. Chem., Int. Ed. 2007, 46, 4614.
[5] (a) Liu, Y. L.; Wang, B. L.; Cao, J. J.; Chen, L.; Zhang, Y. X.; Wang,
C.; Zhou, J. J. Am. Chem. Soc. 2010, 132, 15176; (b) Zhou, F.; Cao,
Z.-Y.; Zhang, J.; Yang, H.-B.; Zhou, J. Chem.-Asian J. 2012, 7, 233;
(c) Zhou, F.; Ding, M.; Zhou, J. Org. Biomol. Chem. 2012, 10, 3178;
(d) Cao, J.-J.; Zhou, F.; Zhou, J. Angew. Chem., Int. Ed. 2010, 49,
4976; (e) Ding, M.; Zhou, F.; Liu, Y.-L.; Wang, C.-H.; Zhao, X.-L.;
Zhou, J. Chem. Sci. 2011, 2, 2035; (f) Qian, Z.-Q.; Zhou, F.; Du,
T.-P.; Wang, B.-L.; Ding, M.; Zhao, X.-L.; Zhou, J. Chem. Commun.
2009, 6753; (g) Cao, Z.-Y.; Zhang, Y.; Ji, C.-B.; Zhou, J. Org. Lett.
2011, 13, 6398; (h) Zhou, F.; Ding, M.; Liu, Y.-L.; Zhou, J. Adv. Syn.
Catal. 2011, 353, 2945; (i) Ding, M.; Zhou, F.; Qian, Z.-Q.; Zhou, J.
References
[1] For reviews, see: (a) Basavaiah, D.; Rao, A. J.; Satyanarayana, T.
Chem. Rev. 2003, 103, 811; (b) Basavaiah, D.; Rao, K. V.; Reddy, R.
J. Chem. Soc. Rev. 2007, 36, 1581; (c) Singh, V.; Batra, S. Tetrahe-
dron 2008, 64, 4511; (d) Declerck, V.; Martinez, J.; Lamaty, F. Chem.
Rev. 2009, 109, 1; (e) Ma, G. N.; Jiang, J. J.; Shi, M.; Wei, Y. Chem.
Commun. 2009, 5496; (f) Mansilla, J.; Saá, J. M. Molecules 2010, 15,
709; (g) Wei, Y.; Shi, M. Acc. Chem. Res. 2010, 43, 1005; For syn-
thetic application of MBH adducts, see: (h) Sun, X.; Peng, J.; Zhang,
S.; Zhou, Q.; Dong, L.; Chen, Y. Acta Chim. Sinica 2012, 70, 1682;
(i) Wu, C.; Zeng, H.; Liu, Z.; Liu, L.; Wang, D.; Chen, Y. Chin. J.
2634
© 2012 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Chin. J. Chem. 2012, 30, 2631—2635