Organic Letters
Letter
absorbers are favored by the close proximity of the (dipolar)
uncaging and (dissymmetrical quadrupolar) 2PA subunits within
dyads. Hence, when the topology is favorable (as in dyads 1 and
4), a positive cooperative 2PA enhancement is achieved in dyads.
Using 2PA data, we derived estimated values of the 2P
uncaging action cross section (δu) of dyads approximating that
one- and two-photon uncaging quantum yields (Qu) are the same
and using δu = Quσ2max. As observed from Table 1, and contrary
to one-photon excitation at 365 nm, all dyads show much larger
two-photon uncaging sensitivity than isolated NVOAc, typically
enhanced by a factor of 5 or 6. Quite interestingly, dyad 4 though
having the lowest energy transfer efficacy and thus being the less
efficient dyad for 1PP appears as a promising dyad for 2P
photolysis both having the largest 2PA cross-section and being
the most red-shifted chromophore allowing 2PE at 800 nm. We
thus selected dyad 4 for conducting 2PP experiments at 800 nm.
NMR monitoring provides evidence that 2P uncaging of acetic
acid occurs upon excitation at 800 nm (Figure 5).
ACKNOWLEDGMENTS
■
This work was supported by funding from the European
Community’s Seventh Framework Program under TOPBIO
Project-Grant Agreement No. 264362. We also acknowledge
financial support from Agence Nationale pour la Recherche
(Grant 2010 ANR-10-BLAN-1436). M.B.D. thanks the Conseil
́
Regional d’Aquitaine for generous funding (Chaire d’Accueil
grant and fellowship to V.H.). The authors are grateful to Jean-
Pierre Majoral and Anne-Marie Caminade (LCC UPR 8241,
Toulouse, France) for the generous gift of MMH-PSCl2.
REFERENCES
■
̌
(1) Klan
́
, P.; Solomek, T.; Bochet, C. G.; Blanc, A.; Givens, R.; Rubina,
M.; Popik, V.; Kostikov, A.; Wirz, J. Chem. Rev. 2013, 113, 119 and
references cited therein.
(2) (a) Furuta, T.; Wang, S. S.-H.; Dantzker, J. L.; Dore, T. M.; Bybee,
W. J.; Callaway, E. M.; Denk, W.; Tsien, R. Y. Proc. Natl. Acad. Sci. U.S.A.
1999, 96, 1193. (b) Gagey, N.; Neveu, P.; Benbrahim, C.; Goetz, B.;
Aujard, I.; Baudin, J.-B.; Jullien, J. J. Am. Chem. Soc. 2007, 129, 9986.
(c) Donato, L.; Mourot, A.; Davenport, C. M.; Herbivo, C.; Warther, D.;
́
Leonard, J.; Bolze, F.; Nicoud, J.-F.; Kramer, R. H.; Goeldner, M.;
Specht, A. Angew. Chem., Int. Ed. 2012, 51, 1840 and references cited
therein. (d) Bort, G.; Gallavardin, T.; Ogden, D.; Dalko, P. I. Angew.
Chem., Int. Ed. 2013, 52, 4526 and references cited therein.
(3) Picard, S.; Cueto-Diaz, E.; Genin, E.; Clermont, G.; Acher, F.;
Ogden, D.; Blanchard-Desce, M. Chem. Commun. 2013, 49, 10805.
(4) (a) Kantevari, S.; Hoang, C. J.; Ogrodnik, J.; Egger, M.; Niggli, E.;
Ellis-Davies, G. C. R. ChemBioChem. 2006, 7, 174. (b) Tang, H.; Kim, K.
H.; Zheng, N.; Song, Z.; Gabrielson, N. P.; Lu, H.; Cheng, J. Angew.
Chem., Int. Ed. 2013, 52, 9182.
(5) Mongin, O.; Porres, L.; Charlot, M.; Katan, C.; Blanchard-Desce,
M. Chem.Eur. J. 2007, 13, 1481.
(6) Gug, S.; Bolze, F.; Specht, A.; Bourgogne, C.; Goeldner, M.;
Nicoud, J.-F. Angew. Chem., Int. Ed. 2008, 47, 9525.
Figure 5. 1H NMR spectrum (300 MHz) of 4 in CDCl3 at t = 0 (black)
and after 4 h two-photon irradiation at 800 nm (blue).
(7) Katan, C.; Charlot, M.; Mongin, O.; Le Droumaguet, C.; Jouikov,
V.; Terenziani, F.; Badaeva, E.; Tretiak, S.; Blanchard-Desce, M. J. Phys.
Chem. B 2010, 114, 3152.
(8) Robin, A.-C.; Parthasarathy, V.; Pla-Quintana, A.; Mongin, O.;
Terenziani, F.; Caminade, A.-M.; Majoral, J.-P.; Blanchard-Desce, M.
SPIE Proc. 2010, 7774, 77740N/1.
(9) Keller, M.; Ianchuk, M.; Ladeira, S.; Taillefer, M.; Caminade, A.-M.;
Majoral, J.-P.; Ouali, A. Eur. J. Org. Chem. 2012, 5, 1056.
(10) Rouxel, C.; Charlot, M.; Mongin, O.; Tathavarathy, R. K.;
Caminade, A.-M.; Majoral, J.-P.; Blanchard-Desce, M. Chem.Eur. J.
2012, 18, 16450.
(11) (a) Papageorgiou, G.; Corrie, J. E. T. Tetrahedron 2000, 56, 8197.
(b) Matsuzaki, M.; Ellis-Davies, G. C. R.; Nemoto, T.; Miyashita, Y.;
Lino, M.; Kasai, H. Nat. Neurosci. 2001, 4, 1086.
(12) Specht, A.; Thomann, J. S.; Alarcon, K.; Ogden, D.; Furuta, T.;
Kurakawa, Y.; Goeldner, M. ChemBioChem 2006, 7, 1690.
(13) Ellis-Davies, G. C. R.; Matsuzaki, M.; Paukert, M.; Kasai, H.;
Bergles, D. E. J. Neurosci. 2007, 27, 6601.
(14) (a) Olson, J. P.; Kwon, H.-B.; Takasaki, K. T.; Chiu, C. Q.; Higley,
M. J.; Sabatini, B. L.; Ellis-Davies, G. C. R. J. Am. Chem. Soc. 2013, 135,
5954. (b) Fournier, L.; Gauron, C.; Xu, L.; Aujard, I.; Le Saux, T.; Gagey-
Eilstein, N.; Maurin, S.; Dubruille, S.; Baudin, J.-B.; Bensimon, D.;
Volovitch, M.; Vriz, S.; Jullien, L. ACS Chem. Biol. 2013, 8, 1528.
In conclusion, we have shown that the engineering of dyads
that combine a dissymmetrical bis-donor chromophore that acts
as the 2P absorber and a dipolar PPG can lead to synergic systems
with improved 2P uncaging sensitivity at 800 nm and enhanced
2PA response. Although the reported uncaging 2P sensitivities
are still moderate due to the poor uncaging quantum yield of NV
and limited FRET efficacy, this opens an interesting route for the
design of more efficient dyads by replacing the PPG by more
efficient ones such as for instance MNI,11 DMNPB,12 and
CDNI,13 which have much larger uncaging quantum yields. In
addition the energy transfer efficiency could be enhanced by
using recently developed red-shifted PPGs that absorb in the
blue visible region14 and show large uncaging quantum yields
(such as DEAC450).14a This would open the way to dyads with
2P uncaging sensitivity over 10 GM. In addition with the purpose
of using such systems in cellular environments, water-soluble
versions of these dyads will be developed.
ASSOCIATED CONTENT
* Supporting Information
■
S
Methods, synthetic details, and NMR spectra. This material is
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
D
dx.doi.org/10.1021/ol5033046 | Org. Lett. XXXX, XXX, XXX−XXX