G1Ru4Fe1. A solution of FeCl2ꢀ4H2O (50.0 mg, 25.1 mmol)
in MeOH (100 mL) was added to a stirred solution of T1Ru2
(95.1 mg, 50 mmol) in MeOH (100 mL). After stirring the
mixture at 25 1C for 10 h, the purple solution was concentrated
in vacuo to give a residue, which was purified by flash column
chromatography (SiO2) using a H2O/MeCN/sat. KNO3(aq.)
(1/7/1 v/v/v) mixture as eluent to afford the dark solid: 84 mg
(84%); 1H NMR (CD3OD/CDCl3, 3/1, 500 MHz): d 9.97
(s, 4H, cPy-H30,50), d 9.79 (s, 8H, bPy-H30,50), 9.57 (s, 4H,
Ph-Hx,z), 9.50 (s, 2H, Ph-Hy), 9.15 (s, 8H, aPy-H30,50),
9.12–9.14 (d, 8H, J = 8.0 Hz, bPy-H3,300), 9.09–9.11 (d, 4H,
J = 8.0 Hz, cPy-H3,300), 8.81–8.83 (d, 8H, J = 8.0 Hz, aPy-H3,300),
8.19–8.21 (d, J = 8.5 Hz, 8H, Ph-H), 8.00–8.06 (m, 20H, a,b,cPy-
H4,400), 7.68–7.70 (d, 4H, J = 5.5 Hz, bPy-H6,600), 7.48–7.50
(m, 12H, a,cPy-H6,600), 7.35–7.37 (m, 8H, bPy-H5,500), 7.29–7.31
(m, 12H, a,cPy-H5,500), 7.25–7.26 (d, J=8.5 Hz, 8H, Ph-H), 3.98
(s, 12H, OCH3); 13C NMR (CD3OD/CDCl3, 3/1, 125 MHz): d
163.1, 161.9, 159.7, 159.41, 159.38, 157.0, 156.4, 153.9, 153.5,
152.8, 151.0, 150.0, 148.8, 141.0, 140.8, 140.1, 139.5, 139.3, 130.4,
130.2, 130.1, 129.7, 129.0, 128.8, 126.5, 125.8, 123.7, 123.5, 121.8,
5 (a) D. Armspach, M. Cattalini, E. C. Constable, C. E. Housecroft
and D. Phillips, Chem. Commun., 1996, 1823–1824; (b) S. Serroni,
S. Campagna, F. Puntoriero, C. Di Pietro, N. D. McClenaghan
and F. Loiseau, Chem. Soc. Rev., 2001, 30, 367–375.
6 (a) A. Adronov and J. M. J. Frechet, Chem. Commun., 2000,
´
1701–1710; (b) R. M. Crooks, M. Zhao, L. Sun, V. Chechik and
L. K. Yeung, Acc. Chem. Res., 2001, 34, 181–190; (c) J. Pei,
J.-L. Wang, X.-Y. Cao, X.-H. Zhou and W.-B. Zhang, J. Am.
Chem. Soc., 2003, 125, 9944–9945; (d) W.-S. Li, D.-L. Jiang,
Y. Suna and T. Aida, J. Am. Chem. Soc., 2005, 127, 7700–7702;
(e) G. R. Newkome and C. D. Shreiner, ‘‘Designer Monomers to
Tailored Dendrimers’’, in Synthesis of Designer Dendrimers, Wiley-
VCH, Weinheim, 2010; (f) B. M. Rosen, C. J. Wilson,
D. A. Wilson, M. Peterca, M. R. Imam and V. Percec, Chem.
Rev., 2009, 109, 6275–6540.
7 (a) Z. S. Yoon, Y.-T. Chan, S. Li, G. R. Newkome and
T. G. Goodson III, J. Phys. Chem. B, 2010, 114, 11731–11736;
(b) U. S. Schubert and C. Eschbaumer, Angew. Chem., Int. Ed.,
2002, 41, 2892–2926; (c) J.-L. Wang, J. Yan, Z.-M. Tang, Q. Xiao,
Y. Ma and J. Pei, J. Am. Chem. Soc., 2008, 130, 9952–9962;
(d) B. Ventura, A. Barbieri, F. Barigelletti, S. Diring and
R. Ziessel, Inorg. Chem., 2010, 49, 8333–8346.
8 (a) D. Armspach, M. Cattalini, E. C. Constable, C. E. Housecroft
and D. Phillips, Chem. Commun., 1996, 1823–1824;
(b) U. S. Schubert, H. Hofmeier and G. R. Newkome, Modern
Terpyridine Chemistry, Wiley-VCH, Weinheim, 2006; (c) A. Wild,
116.0, 56.1; ESI MS (m/z): 1459.1 [M ꢁ 3PF6
]
ꢁ 3+ (calcd m/z =
(calcd m/z = 1058.1), 817.4
A. Winter, F. Schlutter and U. S. Schubert, Chem. Soc. Rev., 2010,
¨
ꢁ 4+
1459.1), 1058.1 [M ꢁ 4PF6
]
40, 1459–1511; (d) U. S. Schubert, A. Winter and G. R. Newkome,
Terpyridine-based Materials, Wiley-VCH, Weinheim, 2011.
9 (a) E. C. Constable and A. M. W. C. Thompson, J. Chem. Soc.,
Chem. Commun., 1992, 617–619; (b) M. Osawa, M. Hoshino,
S. Horiuchi and Y. Wakatsuki, Organometallics, 1999, 18, 112–114.
10 (a) S. Sato, Y. Ishido and M. Fujita, J. Am. Chem. Soc., 2009, 131,
6064–6065; (b) W. Jiang, A. Schafer, P. C. Mohr and
C. A. Schalley, J. Am. Chem. Soc., 2010, 132, 2309–2320;
(c) J.-L. Wang, Y.-T. Chan, C. N. Moorefield, J. Pei,
D. A. Modarelli, N. C. Romano and G. R. Newkome, Macromol.
Rapid Commun., 2010, 31, 850–855.
ꢁ 5+
ꢁ 6+
[M ꢁ 5PF6
]
(calcd m/z = 817.5), 657.0 [M ꢁ 6PF6
]
(calcd m/z = 657.1), 542.5 [M ꢁ 7PF6
]
ꢁ 7+ (calcd m/z = 542.5),
456.5 [M ꢁ 8PF6-]8+ (calcd m/z = 456.6).
Acknowledgements
The authors gratefully thank the National Science Foundation
(DMR-0812337 and DMR-0705015 to GRN; CHE-1012636
and DMR-0821313 to CW) and the Ohio Board of Regents
for financial support.
11 J.-L. Wang, X. Li, X. Lu, Y.-T. Chan, C. N. Moorefield,
C. Wesdemiotis and G. R. Newkome, Chem.–Eur. J., 2011, 17,
4830–4838.
12 (a) C. S. Hoaglund-Hyzer, A. E. Counterman and D. E. Clemmer,
Chem. Rev., 1999, 99, 3027–3079; (b) S. Trimpin and
D. E. Clemmer, Anal. Chem., 2008, 80, 9073–9083;
(c) B. T. Ruotolo, J. L. P. Benesch, A. M. Sandercock,
S. J. Hyung and C. V. Robinson, Nat. Protoc., 2008, 3,
1139–1152; (d) A. C. Joerger, S. Rajagopalan, E. Natan,
D. B. Veprintsev, C. V. Robinson and A. R. Fersht, Proc. Natl.
Acad. Sci. U. S. A., 2009, 106, 17705–17710; (e) K. Thalassinos,
M. Grabenauer, S. E. Slade, G. R. Hilton, M. T. Bowers and
J. H. Scrivens, Anal. Chem., 2009, 81, 248–254.
13 (a) Y.-T. Chan, X. Li, M. Soler, J. L. Wang, C. Wesdemiotis and
G. R. Newkome, J. Am. Chem. Soc., 2009, 131, 16395–16397;
(b) E. R. Brocker, S. E. Anderson, B. H. Northrop, P. J. Stang and
M. T. Bowers, J. Am. Chem. Soc., 2010, 132, 13486–13494;
(c) X. Li, Y.-T. Chan, G. R. Newkome and C. Wesdemiotis, Anal.
Chem., 2011, 83, 1284–1290; (d) Y.-T. Chan, X. Li, J. Yu,
G. A. Carri, C. N. Moorefield, G. R. Newkome and
C. Wesdemiotis, J. Am. Chem. Soc., 2011, 133, 11967–11976.
´ ´ ´
14 J. Zavada, M. Pankova, P. Holy´ and M. Tichy´ , Synthesis, 1994, 1132.
15 G. W. V. Cave and C. Raston, J. Chem. Soc., Perkin Trans. 1,
2001, 3258–3264.
16 T. Mutai, J.-D. Cheon, S. Arita and K. Araki, J. Chem. Soc.,
Perkin Trans. 2, 2001, 1045–1050.
17 I. P. Evans, E. A. Spencer and G. Wilkinson, J. Chem. Soc., Dalton
Trans., 1973, 204–209.
18 C. D. Shreiner, C. N. Moorefield, D. V. Reddy, T. J. Cho, D. K. Parker,
F. R. Fronczek, S. R. Tummalapalli and G. R. Newkome, J. Inorg.
Organomet. Polym. Mater., 2005, 15, 459–467.
Notes and references
1 (a) J.-M. Lehn, Supramolecular Chemistry: Concepts and Perspectives,
VCH, Weinheim, 1995; (b) D. Philip and J. F. Stoddart, Angew.
Chem., Int. Ed. Engl., 1996, 35, 1155–1196; (c) S. Leininger,
B. Olenyuk and P. J. Stang, Chem. Rev., 2000, 100, 853–908;
(d) B. J. Holliday and C. A. Mirkin, Angew. Chem., Int. Ed., 2001,
40, 2022–2043; (e) G. M. Whitesides and B. Grzybowski, Science,
2002, 295, 2418–2421; (f) B. H. Northrop, Y. R. Zheng, K. W. Chi
and P. J. Stang, Acc. Chem. Res., 2009, 42, 1554–1563.
2 (a) M. Fujita, J. Yazaki and K. Ogura, J. Am. Chem. Soc., 1990,
112, 5645–5647; (b) T. Bark, M. Duggeli, H. Stoeckli-Evans and
¨
A. von Zelewsky, Angew. Chem., Int. Ed., 2001, 40, 2848–2851;
(c) T. Megyes, H. Jude, T. Grosz, I. Bako, T. Radnai, G. Tarkanyi,
G. Palinkas and P. J. Stang, J. Am. Chem. Soc., 2005, 127,
10731–10738; (d) K. Mahata, M. L. Saha and M. Schmittel,
J. Am. Chem. Soc., 2010, 132, 15933–15935; (e) Y.-T. Chan,
C. N. Moorefield, M. Soler and G. R. Newkome, Chem.–Eur. J.,
2010, 16, 1768–1771; (f) J.-L. Wang, X. Li, X. Lu, I.-F. Hsieh,
Y. Cao, C. N. Moorefield, C. Wesdemiotis, S. Z. D. Cheng and
G. R. Newkome, J. Am. Chem. Soc., 2011, 133, 11450–11453.
3 (a) M. Fujita, M. Tominaga, A. Hori and B. Therrien, Acc. Chem.
Res., 2005, 38, 369–378; (b) M. Yoshizawa, J. K. Klosterman and
M. Fujita, Angew. Chem., Int. Ed., 2009, 48, 3418–3438;
(c) K. Ghosh, J. Hu, H. S. White and P. J. Stang, J. Am. Chem.
Soc., 2009, 131, 6695–6697; (d) Q. F. Sun, J. Iwasa, D. Ogawa,
Y. Ishido, S. Sato, T. Ozeki, Y. Sei, K. Yamaguchi and M. Fujita,
Science, 2010, 328, 1144–1147.
19 J. K. McCusker, K. N. Walda, R. C. Dunn, J. D. Simon, D. Magde
and D. N. Hendrickson, J. Am. Chem. Soc., 1993, 115, 298–307.
20 J.-L. Wang, Y. Zhou, Y. Li and J. Pei, J. Org. Chem., 2009, 74,
7449–7456.
21 C.-Q. Ma, M. Fonrodona, M. C. Schikora, M. M. Wienk, R. A. J.
¨
Janssen and P. Bauerle, Adv. Funct. Mater., 2008, 18, 3323–3331.
4 (a) C. G. Oliveri, P. A. Ulmann, M. J. Wiester and C. A. Mirkin,
Acc. Chem. Res., 2008, 41, 1618–1629; (b) Y.-R. Zheng, Z. Zhao,
M. Wang, K. Ghosh, J. B. Pollock, T. R. Cock and P. J. Stang,
J. Am. Chem. Soc., 2010, 132, 16873–16882.
c
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2012
New J. Chem., 2012, 36, 484–491 491