J . Org. Chem. 1996, 61, 4739-4747
4739
Syn th esis a n d Con for m a tion a l Beh a vior of Rh od iu m (I)
Meta lloh osts Der ived fr om Dip h en ylglycolu r il
Hein K. A. C. Coolen,† Piet W. N. M. van Leeuwen,‡ and Roeland J . M. Nolte*,†
Department of Organic Chemistry, Nijmegen SON Research Center, Toernooiveld, 6525 ED Nijmegen,
The Netherlands, and Department of Chemical Engineering, J . H. van’t Hoff Instituut,
University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
Received March 23, 1995 (Revised Manuscript Received February 16, 1996X)
The design and synthesis of molecules containing both a substrate-binding cavity and a nearby
catalytically active metal center is a useful approach to the development of synthetic systems that
function according to the principles of enzymes. To this end the receptor molecule 2a , derived
from diphenylglycoluril, was functionalized with triaryl phosphite ligands to give the receptor ligand
2d . Exchange reactions of 2d with (diketonate)Rh(CO)2, (diketone ) acetylacetone, dibenzoyl-
methane, or dipivaloylmethane) led to the formation of the metallohosts 3a -c, respectively. The
properties and conformational behavior of these metal complexes were studied by NMR techniques.
Reaction of compounds 3 with H2 in the presence of a small excess of additional triphenyl phosphite
yields the rhodium(I) hydride complex 5. The metallohosts are capable of binding dihydroxybenzene
guests in their cavities by hydrogen bonding and π-π stacking interactions. On binding a substrate
the conformational behavior of hosts 3a -c was affected considerably.
In tr od u ction
hosts6 with metal centers have been described in the
literature., e.g. functionalized cyclodextrines,5a,7 capped
Current interest in the field of supramolecular chem-
istry is focused on the design of advanced molecular
devices and catalytic systems. As a result of built-in
ordering or information the system or device is intended
to perform certain actions, mostly based on and inspired
by biological processes. Macrocyclic rings and molecular
cages have been synthesized and explored for applica-
tions such as selective recognition,1 transport,2 switch-
ing,3 self-replication,4 and catalysis.1b,5 For a supramo-
lecular catalyst, a host is required that recognizes the
substrate selectively and contains a nearby catalytic
center that can convert the bound substrate, and finally,
the catalyst should be able to release the product and
have the property to be regenerated efficiently. Our
objective is to develop these systems by the design and
synthesis of molecules containing both a cavity and a
catalytically active metal center. Several examples of
porphyrins,6,8 and modified cyclophanes.1b
In this paper we decribe host molecules that are
provided with a nearby Rh(I)-triorganyl phosphite com-
plex. They are synthesized from the clip molecule 1a ,
which is derived from diphenylglycoluril.9 These metal-
lohosts are selective hydrogenation and isomerization
catalysts for dihydroxy-substituted allylarene substrates,
as will be described in a separate paper.10
Resu lts a n d Discu ssion
Design . The substrate-binding moiety of our metal-
lohosts is molecule 2a (R ) H), previously reported by
us.11 The central part of this molecule has the form of a
clip (see Figure 1).12 The two side walls of 1a are
connected by azatetrakis(ethylene glycol) chains, giving
the molecule the structure of a basket. The nitrogen
atoms in the rings can be used to functionalize the basket
with metal binding ligands, viz. by connecting them via
spacers. The form and the length of the spacers will
define the final flexibility and property of the system.
Since the rings of 2a contain many hard donor atoms we
decided to connect soft donor ligands to the nitrogen
atoms in order to be able to distinguish between the two
ligating moieties (Pearson’s HSAB theorem13). The che-
late effect is expected to be small because of the large
† Nijmegen SON Research Center.
‡ J . H. van’t Hoff Institute.
X Abstract published in Advance ACS Abstracts, May 1, 1996.
(1) (a) Gokel, G. W. Crown Ethers and Cryptands; Royal Society of
Chemistry: Cambridge, U.K., 1991. (b) Diederich, F. Cyclophanes;
Royal Society of Chemistry: Cambridge, U.K., 1991. For other
examples, see: (c) Fan, E.; Vanarman, S. A.; Kincaid, S. Hamilton, A.
D. J . Am. Chem. Soc. 1993, 115, 369. (d) Yoon, S. S.; Still, W. C. Ibid.
1993, 115, 823. (d) Rebek, J ., J r.; Nemeth, D. Ibid. 1985, 107, 6738.
(e) Schmitchen, F. P. Tetrahedron Lett. 1989, 30, 4493. (f) Dougherty,
D. A.; Stauffer, D. A. Science 1990, 250, 1558.
(2) See for example: (a) Nijenhuis, W. F.; Buitenhuis, E. G.; de J ong,
F.; Sudho¨lter, E. J . R.; Reinhoudt, D. N. J . Am. Chem. Soc. 1991, 113,
7963. (b) Pregel, M. J .; J ullien, L.; Lehn, J .-M. Angew. Chem. 1992,
104, 1695. (c) Roks, M. F. M.; Nolte, R. J . M. Macromolecules 1992,
25, 5398. (d) van Straaten-Nijenhuis, W. F.; van Doorn, A. R.;
Reichwein, A. M.; de J ong, F.; Reinhoudt, D. N. J . Org. Chem. 1993,
58, 2265. (e) Rebek, J ., J r.; Askew, B.; Nemeth, D.; Parris, K. J . Am.
Chem. Soc. 1987, 109, 2432.
(3) See for example: (a) Beer, P. D. Chem. Soc. Rev. 1989, 18, 409.
(b) Shinkai, S. Pure Appl. Chem. 1987, 59, 425. (c) Sabbatini, N.;
Guardigli, M.; Lehn, J .-M. Coord. Chem. Rev. 1993, 123, 201. (d)
Cobben, P. L. H. M.; Egberink, R. J . M.; Bomer, J . G.; Bergveld, P.;
Verboom, W.; Reinhoudt, D. N. J . Am. Chem. Soc. 1992, 114, 10573.
(4) (a) Nowick, J . S.; Feng, Q.; Tjivikua, T.; Ballester, P.; Rebek, J .,
J r. J . Am. Chem. Soc. 1991, 113, 8831. (b) Park, T. K.; Feng, Q.; Rebek,
J ., J r. Ibid. 1992, 114, 4529.
(6) Meade T. J .; Busch, D. H. Prog. Inorg. Chem. 1985, 33, 59.
(7) (a) Breslow, R.; Overman, L. E. J . Am. Chem. Soc. 1970, 92, 1075.
(b) Komiyama, M.; Matsumoto, Y. Chem. Lett. 1989, 719.
(8) (a) Baldwin, J . E.; Perlmutter, P. Top. Curr. Chem. 1984, 121,
181. (b) Mansuy, D. Pure Appl. Chem. 1987, 59, 759. (c) Groves, J . T.;
Viski, P. J . Am. Chem. Soc. 1989, 111, 8537; J . Org. Chem. 1990, 55,
3628. (d) Collman, J . P.; Zhang, X.; Lee, V. J .; Brauman, J . I. J . Chem.
Soc., Chem. Commun. 1992, 1647.
(9) Smeets, J . W. H.; Sijbesma, R. P.; Niele, F. G. M.; Spek, A. L.;
Smeets, W. J . J .; Nolte, R. J . M. J . Am. Chem. Soc. 1987, 109, 928.
(10) Coolen, H. K. A. C.; Meeuwis, J . A. M.; van Leeuwen, P. W. N.
M.; Nolte, R. J . M. J . Am. Chem. Soc. 1995, 117, 11906.
(11) (a) Smeets, J . W. H.; Sijbesma, R. P.; van Dalen, L.; Spek, A.
L.; Smeets, W. J . J .; Nolte, R. J . M. J . Org. Chem. 1989, 54, 3710. (b)
Smeets, J . W. H.; Visser, H. C.; Kaats-Richters, V. E. M.; Nolte, R. J .
M. Recl. Trav. Chim. Pays-Bas 1990, 109, 147.
(5) See for example: (a) Tabushi, I. Acc. Chem. Res. 1982, 15, 66.
(b) Anslyn, E.; Breslow, R. J . Am. Chem. Soc. 1989, 111, 8931. (c) Kelly,
T. R.; Bridger, T. J .; Zhao, C J . Am. Chem. Soc. 1990, 112, 8024. (d)
Walter, C. J .; Anderson, H. L.; Sanders, J . K. M. J . Chem. Soc., Chem.
Commun. 1993, 458.
(12) Sijbesma, R. P.; Bosman, W. P.; Nolte, R. J . M. J . Chem. Soc.,
Chem. Commun. 1991, 885.
S0022-3263(95)00558-5 CCC: $12.00 © 1996 American Chemical Society