be achieved through selective alkylation and amidation,
respectively. For our initial studies, we focused on a
14-membered ring skeleton because there are several examples
of the presence of this ring in a wide variety of bioactive
natural products, such as radicicol,18 pochonin,19 hypo-
themycin,20 aigialomycin, and other related compounds
(structures not shown). Four macrocyclic targets (1.1ꢀ1.4)
were to be obtained from a common starting material
(1.5) which is easy to access, and both enantiomers could
be obtained in several gram quantities in a short duration.
This can further allow us to explore the stereochemical
diversity on a macrocyclic ring.
Scheme 1. A Modular Approach To Access a Diverse Set
of 14-Membered Ring Macrocyclic Compounds
As shown in Scheme 2, 2-nitrobenzaldehyde was con-
verted to an R,β-unsaturated carboxylester by a Hornerꢀ
WadsworthꢀEmmons reaction and then subjected to a
Sharpless asymmetric dihydroxylation reaction, giving an
enantiopure dihydroxyl derivative. Following the aceto-
nide protection of the diol, the carboxylester was then
reduced with lithium borohydride to give primary alcohol
2.2. Primary amine 2.3 was then obtained from 2.2 in four
steps: (i) the conversion of alcohol to azide by mesylation
with methane sulfonyl chloride and then by treating with
sodium azide, (ii) the deprotection of actonide, (iii) 1,2-diol
methylation with methyl iodide, and, finally, (iv) the
reduction of azide by a Staudinger reaction to give primary
amine 2.3. This was converted to a secondary amine by
imino-reduction with isobutyraldehyde, which was then
of macrocyclic compounds to explore their biological
functions.7ꢀ15
With this objective, we were interested in developing a
modular synthesis method to access different types of
14- membered ring macrocyclic compounds as shown in
Scheme 1. In our approach, we were interested in devel-
oping a method that is simple and practical in nature, and
in our design strategy, we can introduce skeletal diversity
and modulate various functional groups, i.e. through D- or
L-amino acids and Sharpless chemistry.16 The proposed
natural product-inspired compounds are more closely
related to natural products in terms of 3D shapes and the
dense display of chiral functional groups. One of the major
advantages is that they are easy to explore in regards to
stereochemical and skeletal diversity and the chemical
space around the scaffold and are easy to synthesize on a
gram scale in a reasonable time scale.7,8,17
In our modular design strategy, we had the option to
bring the amino acid functionality either through the
aromatic amine or from the aliphatic side chain (see
macrocyclic targets 1.1ꢀ1.4). Further, variation in the
side chain, i.e. R2ꢀR4, on the macrocyclic skeleton can also
Scheme 2. Synthesis of 14-Membered Macrocycles 1.1 and 1.2
(8) Thomas, G. L.; Wyatt, E. E.; Spring, D. R. Curr. Opin. Drug
Discovery Dev. 2006, 9, 700.
(9) Dandapani, S.; Lowe, J. T.; Comer, E.; Marcaurelle, L. A. J. Org.
Chem. 2011, 76, 8042.
(10) Marcaurelle, L. A.; Comer, E.; Dandapani, S.; Duvall, J. R.;
Gerard, B.; Kesavan, S.; Lee, M. D. t.; Liu, H.; Lowe, J. T.; Marie, J. C.;
Mulrooney, C. A.; Pandya, B. A.; Rowley, A.; Ryba, T. D.; Suh, B. C.;
Wei, J.; Young, D. W.; Akella, L. B.; Ross, N. T.; Zhang, Y. L.; Fass,
D. M.; Reis, S. A.; Zhao, W. N.; Haggarty, S. J.; Palmer, M.; Foley,
M. A. J. Am. Chem. Soc. 2010, 132, 16962.
(11) Ajay, A.; Sharma, S.; Gupt, M. P.; Bajpai, V.; Hamidullah;
Kumar, B.; Kaushik, M. P.; Konwar, R.; Ampapathi, R. S.; Tripathi,
R. P. Org. Lett. 2012, 14, 4306.
(12) Dockendorff, C.; Nagiec, M. M.; Weiwer, M.; Buhrlage, S.;
Ting, A.; Nag, P. P.; Germain, A.; Kim, H. J.; Youngsaye, W.; Scherer,
C.; Bennion, M.; Xue, L.; Stanton, B. Z.; Lewis, T. A.; Macpherson, L.;
Palmer, M.; Foley, M. A.; Perez, J. R.; Schreiber, S. L. ACS Med. Chem.
Lett. 2012, 3, 808.
(13) Moretti, J. D.; Wang, X.; Curran, D. P. J. Am. Chem. Soc. 2012,
134, 7963.
(14) Stanton, B. Z.; Peng, L. F.; Maloof, N.; Nakai, K.; Wang, X.;
Duffner, J. L.; Taveras, K. M.; Hyman, J. M.; Lee, S. W.; Koehler,
A. N.; Chen, J. K.; Fox, J. L.; Mandinova, A.; Schreiber, S. L. Nat.
Chem. Biol. 2009, 5, 154.
coupled withdifferent N-protectedamino acids (2.6) under
HBTU conditions to obtain compounds 2.4. With com-
pounds having NCbz as the protecting group, the nitro
reduction and NCbz removal were performed in a single
(15) Peng, L. F.; Stanton, B. Z.; Maloof, N.; Wang, X.; Schreiber,
S. L. Bioorg. Med. Chem. Lett. 2009, 19, 6319.
(18) Winssinger, N.; Barluenga, S. Chem. Commun. (Camb.) 2007,
(16) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem.
Rev. 1994, 94, 2483.
(17) Bender, A.; Fergus, S.; Galloway, W. R.; Glansdorp, F. G.;
Marsden, D. M.; Nicholson, R. L.; Spandl, R. J.; Thomas, G. L.; Wyatt,
E. E.; Glen, R. C.; Spring, D. R. Ernst Schering Res. Found Workshop
2006, 47.
22.
(19) Moulin, E.; Barluenga, S.; Winssinger, N. Org. Lett. 2005, 7,
5637.
(20) Barluenga, S.; Jogireddy, R.; Koripelly, G. K.; Winssinger, N.
ChemBioChem 2010, 11, 1692.
Org. Lett., Vol. 15, No. 3, 2013
437