12 X. B. Sun, Y. Q. Liu, X. J. Xu, C. H. Yang, G. Yu, S. Y. Chen,
Z. H. Zhao, W. F. Qiu, Y. F. Li and D. B. Zhu, J. Phys. Chem. B,
2005, 109, 10786.
13 Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan and
A. J. Heeger, Nat. Mater., 2012, 11, 44.
14 H. Zhou, L. Yang and W. You, Macromolecules, 2012, 45, 607.
15 J.-L. Bredas, J. E. Norton, J. Cornil and V. Coropceanu, Acc. Chem.
Res., 2009, 42, 1691.
16 H. R. Kerp, H. Donker, R. B. M. Koehorst, T. J. Schaafsma and
E. E. van Faassen, Chem. Phys. Lett., 1998, 298, 302.
17 T. J. Savenije, E. Moons, G. K. Boschloo, A. Goossens and
T. J. Schaafsma, Phys. Rev. B: Condens. Matter, 1997, 55, 9685.
18 P. Vilmercati, C. Castellarin-Cudia, R. Gebauer, P. Ghosh, S. Lizzit,
L. Petaccia, C. Cepek, R. Larciprete, A. Verdini, L. Floreano,
A. Morgante and A. Goldoni, J. Am. Chem. Soc., 2009, 131, 644.
19 X. Huang, C. Zhu, S. Zhang, W. Li, Y. Guo, X. Zhan, Y. Liu and
Z. Bo, Macromolecules, 2008, 41, 6895.
20 H. Imahori and S. Fukuzumi, Adv. Funct. Mater., 2004, 14, 525.
21 D. Wrobel, A. Siejak and P. Siejak, Sol. Energy Mater. Sol. Cells,
2010, 94, 492.
22 W. Zhou, P. Shen, B. Zhao, P. Jiang, L. Deng and S. Tan, J. Polym.
Sci., Part A: Polym. Chem., 2011, 49, 2685.
In conclusion, a new conjugated D–A porphyrin small molecule
has been designed and synthesized. The typical acceptor BT end-
capped with 3-hexylthienyl was linked by an ethynylene bridge to a
porphyrin core. Due to the p-conjugation of the whole molecule and
the push–pull property of the porphyrin core and BTs after the
introduction of ethynylene and the BT acceptor, the porphyrin
showed significant red-shifts both at the Soret band and Q bands and
enhanced absorbance at the Q bands of the absorption spectrum. The
BHJ OSCs fabricated by solution spin-coating with DHTBTEZP as
the donor and PC71BM as the acceptor showed a Jsc of 9.46 mA
cmꢁ2, a Voc of 0.85 V, and a FF of 50%, resulting in a PCE of 4.02%.
This is the highest PCE for BHJ OSCs based on the solution-
processable porphyrin small molecules as the donors and PCBM as
the acceptor reported so far. This study shows that the performance
of porphyrin-based OSCs can be significantly improved upon suit-
able molecular design, indicating that porphyrins are promising for
the application in BHJ OSCs.
23 X. Huang, Q. Shi, W.-Q. Chen, C. Zhu, W. Zhou, Z. Zhao,
X.-M. Duan and X. Zhan, Macromolecules, 2010, 43, 9620.
24 H. Yamada, H. Imahori, Y. Nishimura, I. Yamazaki, T. K. Ahn,
S. K. Kim, D. Kim and S. Fukuzumi, J. Am. Chem. Soc., 2003,
125, 9129.
25 F. C. Grozema, C. Houarner-Rassin, P. Prins, L. D. A. Siebbeles and
H. L. Anderson, J. Am. Chem. Soc., 2007, 129, 13370.
26 P. B. Shea, J. Kanicki and N. Ono, J. Appl. Phys., 2005, 98,
014503.
Acknowledgements
This work was financially supported by the grants from the National
Natural Science Foundation of China (51073060, 50990065, and
51010003) and International Science and Technology Cooperation
Program of China (2010DFA52150).
27 C. Deibel, T. Strobel and V. Dyakonov, Adv. Mater., 2010, 22,
4097.
Notes and references
28 S. M. Khan, M. Kaur, J. R. Heflin and M. H. Sayyad, J. Phys. Chem.
Solids, 2011, 72, 1430.
1 A. Goetzberger, C. Hebling and H. W. Schock, Mater. Sci. Eng., R,
2003, 40, 1.
29 M. J. T. Frisch, G. W. Schlegel, H. B. Scuseria, G. E. Robb,
J. R. S. M. A. Cheeseman, G. Barone, V. Mennucci and
B. G. A. e. a. Petersson, Gaussian 09, Revision A.02, Gaussian, Inc.:
Wallingford, CT, 2009.
2 S. Fukuzumi and T. Kojima, J. Mater. Chem., 2008, 18, 1427.
3 T. Umeyama, T. Takamatsu, N. Tezuka, Y. Matano, Y. Araki,
T. Wada, O. Yoshikawa, T. Sagawa, S. Yoshikawa and
H. Imahori, J. Phys. Chem. C, 2009, 113, 10798.
30 A. W. Hains, Z. Liang, M. A. Woodhouse and B. A. Gregg, Chem.
Rev., 2010, 110, 6689.
31 T. J. Savenije, R. B. M. Koehorst and T. J. Schaafsma, J. Phys. Chem.
B, 1997, 101, 720.
32 P. W. M. Blom, M. J. M. deJong and M. G. vanMunster, Phys. Rev.
B: Condens. Matter, 1997, 55, R656.
33 J. D. Zimmerman, V. V. Diev, K. Hanson, R. R. Lunt, E. K. Yu,
M. E. Thompson and S. R. Forrest, Adv. Mater., 2010, 22, 2780.
34 J. D. Zimmerman, E. K. Yu, V. V. Diev, K. Hanson,
M. E. Thompson and S. R. Forrest, Org. Electron., 2011, 12, 869.
35 A. D. Shukla, P. C. Dave, E. Suresh, A. Das and P. Dastidar, J. Chem.
Soc., Dalton Trans., 2000, (23), 4459.
4 M. D. Perez, C. Borek, P. I. Djurovich, E. I. Mayo, R. R. Lunt,
S. R. Forrest and M. E. Thompson, Adv. Mater., 2009, 21, 1517.
5 A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran,
M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin
and M. Graetzel, Science, 2011, 334, 629.
6 M. Victoria Martinez-Diaz, G. de la Torrea and T. Torres, Chem.
Commun., 2010, 46, 7090.
7 C.-L. Wang, W.-B. Zhang, R. M. Van Horn, Y. Tu, X. Gong,
S. Z. D. Cheng, Y. Sun, M. Tong, J. Seo, B. B. Y. Hsu and
A. J. Heeger, Adv. Mater., 2011, 23, 2951.
8 W. W. H. Wong, T. Khoury, D. Vak, C. Yan, D. J. Jones,
M. J. Crossley and A. B. Holmes, J. Mater. Chem., 2010, 20, 7005.
9 Y. Matsuo, Y. Sato, T. Niinomi, I. Soga, H. Tanaka and
E. Nakamura, J. Am. Chem. Soc., 2009, 131, 16048.
36 W. D. Wu, Y. Q. Liu and D. B. Zhu, Chem. Soc. Rev., 2010, 39, 1489–
1502.
37 L. J. Huo, J. H. Hou, S. Q. Zhang, H. Y. Chen and Y. Yang, Angew.
Chem., Int. Ed., 2010, 49, 1500–1503.
10 B. Walker, C. Kim and T.-Q. Nguyen, Chem. Mater., 2011, 23, 470.
11 A. Mishra and P. Baeuerle, Angew. Chem., Int. Ed., 2012, 51, 2020.
21844 | J. Mater. Chem., 2012, 22, 21841–21844
This journal is ª The Royal Society of Chemistry 2012