3
4. (a) Moorhouse, A. D.; Santos, A. M.; Gunaratnam, M.;
Moore, M.; Neidle, S.; Moses, J. E. J. Am. Chem. Soc. 2006,
128, 15972.
5. (a) Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.;
Scheel, A.; Voit, B.; Pyun, J.; Fre´chet, J. M. J.; Harpless,
K. B.; Fokin, V. V. Angew. Chem., Int. Ed. 2004, 43, 3928;
(b) Rozkiewicz, D. I.; Jan´czewski, D.; Verboom, W.;
Ravoo, B. J.; Reinhoudt, D. N. Angew. Chem., Int. Ed.
2006, 45, 5292.
necessary for the reaction. To check the role of hydrazine
hydrate, it was replaced with benzhydrazide and found that
the expected product could be achieved in good yield,
however there is formation of side product which after
characterization, was confirmed as phenylisocyanate
(Scheme 2).
6. Wang, Q.; Chan, T. R.; Hilgraf, R.; Fokin, V. V.; Sharpless,
K. B.; Finn, M. G. J. Am. Chem. Soc. 2003, 125, 3192.
7. (a) Speers, A. E.; Cravatt, B. F. Chem. Biol. 2004, 11, 535;
(c) Burley, G. A.; Gierlich, J.; Mofid, M. R.; Nir, H.; Tal,
S.; Eichen, Y.; Carell, T. J. Am. Chem. Soc. 2006, 128,
1398.
Scheme 2. Reaction of aniline in the presence of benzhydrazide
8. (a) Huisgen R., Szeimies G. and Möbius L., Chem. Ber.,
1976, 100, 2949.
Plausible mechanism of the conversion of amine to azide is
predicted as shown in scheme 3. One mole of sodium nitrite
react with aniline to give diazonium salt followed by
nucleophilic substitution with azide ion which was formed
in situ by reaction between second mole of sodium nitrite
and hydrazine hydrate in the presence of acidic medium.
9. (a) Nomiya K., Noguchi R. and Oda M., Inorg. Chim. Acta,
2000, 298, 24; (b) van Berkel S. S., Dirks A. J., Debets M.
J., van Delft F. L., Cornelissen J. J. L. M. and Tutjes F. P. J.
T., Chem Bio Chem, 2007, 8, 1504; (c) Tam A., Arnold U.,
Soellner M. B. and Raines R. T., J. Am. Chem. Soc., 2007,
129, 12670; (d) Bokor E., Docsa T., Gergely P. and Somsák
L., Bioorg. Med. Chem., 2010, 18, 1171; (e) Sletten E. M.
and Bertozzi C. R., Acc. Chem. Res., 2011, 44, 666.
10. (a) Singh R. P., Verma R. D., Meshri D. T. and Shreeve J.
M., Angew. Chem., Int. Ed., 2006, 45, 3584; (b) Tappan B.
C., Huynh M. H., Hiskey M. A., Chavez D. E., Luther E. P.,
Mang J. T. and Son S. F., J. Am. Chem. Soc., 2006, 128,
6589.
11. (a) Peng, C.; Zhang, W.; Yan, G.; Wang, J. Org. Lett. 2009,
11, 1667; (b) Barluenga, J.; Tomás-Gamasa, M.; Aznar, F.;
Valdés, C. Nat. Chem. 2009, 1, 494. (c) Lili O., Jiaan S.,
Guolin Z., Yongping Y.; Tetrahedron Lett. 2011, 52, 1430
12. Grimes K. D., Gupte A., Aldrich C. C., Synthesis, 2010,
1441.
13. Hubbard A., Okazaki T., Laali K. K., J. Org. Chem., 2008,
73, 316.
14. Scriven, E. F. V.; Turnbull, K. Chem. Rev. 1988, 88, 297
15. (a) Biffin, M. E. C.; Miller, J.; Paul, D. B. In The Chemistry
of the Azido Group; Patai, S., Ed.; Wiley: New York, 1971;
pp147-176. See also: (b) Takahashi, M.; Suga, D. Synthesis
1998, 7, 986
16. (a) Smith, P. A. S.; Rowe, C. D.; Bruner, L. B. J. Org.
Chem. 1969, 34, 3430; (b) Gavenonis, J.; Tilley, T. D.
Organometallics 2002, 21, 5549
Scheme 3. Plausible mechanism
17. Liu, Q.; Tor, Y. Org. Lett. 2003, 5, 2571
18. Zaloom, J.; Roberts, D. C. J. Org. Chem. 1981, 46, 5173.
19. Das, J.; Patil, S. N.; Awasthi, R.; Narasimhulu, C. P.;
Trehan, S. Synthesis 2005, 11, 1801
In summary, we have described a simple, efficient and
single step procedure for conversion of aromatic amines
into corresponding aryl azides using sodium azide and
hydrazine hydrate in short reaction time.
20. (a) Nguyen, D.M.; Miles, D.H.; Syn. Comm. 2011, 41,
1759-1771. (b) Iranpoor, N.; Firouzabadi, H.; Nowrouzi,
N.; Tetrahedron Lett, 2008, 49, 4242 – 4244. (c) Kim,
Y.H.; Kim, K.; Shim, S.B.; Tetrahedron Lett,
2008, 39, 4749 – 4752. (d) Warmuth, R.; Makowiec, S.; J.
Am. Chem. Soc. 2005, 127, 1084-1085. (d) Matsuya, Y.;
Itoh, T.; Nagata, K.; Ohsawa, A.; Tetrahedron, 1997, 53,
15701 – 15710. (f) Dutt, P.K.; Whitehead, H.R.; Wormall,
A.; J. Chem. Soc. 1921, 119, 2088.
Acknowledgment
A.A.S thank the University Grant Commission (UGC-
Green Tech.) and B.S.T. the Council of Scientific and
Industrial Research (CSIR), New Delhi for financial
support.
21. Telvekar, V.; Takale, B. Tetrahedron Lett. 2011, 52, 2394.
22. Typical Procedure for the azidation of aromatic amines:
A finely ground mixture (in case of solid) of aromatic amine
(1 equiv) and sodium nitrite (2 equiv) was stirred in
dichloromethane solvent at r.t. for 5 min followed by
addition of AcOH (8 equiv) and hydrazine hydrate (5 equiv,
99%) at r.t. for 30 min. The reaction mixture was then
washed with H2O (3 × 20 mL) and finally with brine
solution (2 × 20 mL). The organic layer dried over anhyd
Na2SO4, filtered and concentrated under reduced pressure to
give the crude product. The crude product was purified
using silica gel column chromatography (plane hexane).
Azido benzene (Table 2, Entry 1) 23a
References
1. (a) Brase, S.; Gil, C.; Knepper, K.; Zimmermann, V.
Angew. Chem., Int. Ed. 2005, 44, 5188.
2. (a) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew.
Chem., Int. Ed. 2001, 40, 2004; (b) Breinbauer, R.; Ko¨hn,
M. ChemBioChem 2003, 4, 1147; (c) Bock, V. D.;
Hiemstra, H.; van Maarseveen, J. H. Eur. J. Org. Chem.
2006, 1, 51
3. (a) Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org.
Chem. 2002, 67, 3057; (b) Rostovtsev, V. V.; Green, L. G.;
Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002,
41, 2596.
Yellow liquid, bp 44oC, IR: 2120, 2091, 1592, 1490, 1292,
1
1280 cm-1, H NMR (400 MHz, CDCl3): δ = 7.4 (m, 2H),
7.09 (m, 3H), GC/MS: 120[M] +.
1-azido-2-hydroxybenzene (Table 2, Entry 2) 23b