enantiopure starting material.6 These traditional approaches
have been supplemented in recent years by inter- and intra-
molecular 1,2-diaminations of alkenes7 and oxidative cycli-
zations of allylic sulfamides.8 Being very promising due to
their atom efficiency, these methods, however, still suffer
from a limited substrate scope and only furnished racemic
1,2,5-thiadiazolidines so far.9
In contrast, the utilization of cyclic starting materials has
rarely been reported,10 including racemic syntheses from
thiadiazole-1,1-dioxides.10b,c These unsaturated analogs con-
taining two C,N-double bonds also have interesting biologi-
cal properties as histamine H2-receptor antagonists11a,b as
well as antihypertensive and vasodilating agents11c and are
often described in patent literature.12 Thiadiazole-1,1-diox-
ides with organic substituents at the C-atoms are obtained
from 1,2-diketones by condensation with sulfamide, SO2-
(NH2)2, and 3,4-diaryl substituted compounds can be
prepared under mild conditions using Et3N.10c However,
alkyl-substituted derivatives are so far only obtainable under
harsh conditions, i.e. refluxing with HCl in alcoholic
medium, which results in a limited functional group
tolerance.10c,13 Herein, we report on an improved protocol
for the preparation of 4-alkyl-3-aryl-1,2,5-thiadiazole-1,
1-dioxides and on their transformation into enantiopure
cis- and trans-thiadiazolidine-1,1-dioxides.
polar reagent which is readily prepared from SO2Cl2 and
NH(SiMe3)2.14 Stirring of 1,2-diketones 1 with an excess of
15
this reagent and stoichiometric amounts of BF3 OEt2
3
resulted in smooth formation of the desired condensa-
tion products in considerably increased yields of 70ꢀ90%
(Table 1). Thus, major improvements can be achieved espe-
cially in the case of more sensitive compounds (entries 2, 7). In
the case of longer n-alkyl chains at C4, the thiadiazoles 2 were
formed as mixtures with the respective 4-alkylidenethiadia-
zolines 3 in varying percentages. Similar observations have
been made before16 and might stem from reduced ecliptic
interactions when going from thiadiazoles 2 with a planar
ring to the tautomers 3.17
Table 1. Improved Synthesis of Thiadiazole-1,1-dioxides
entry
product
Ar
R
yield (%)a
1
2
3
4
5
6
7
8
2a
Ph
Ph
Ph
Ph
Me
Et
Et
iPr
Et
Et
Et
87 [58]c
78 [29]c
85 [56]c
90 [58]c
81 [65]c
72 [58]c
70 [30]c
75
2b
2cb
2db
2e
The inherent problem of the previous syntheses of
thiadiazole-1,1-dioxides is the poor solubility of SO2(NH2)2
in aprotic solvents, thus requiring the use of alcoholic media
and strong Brønsted acids. To overcome this limitation we
devised the use of N,N0-bis(trimethylsilyl)sulfamide as a less
p-MeOC6H4
p-MeOC6H4
p-ClC6H4
2fb
2gb
2hb
furan-2-yl
thiophen-3-yl
a Isolated yield. b Obtained as mixture with tautomer 3 in varying
percentages. c Numbers in brackets indicate isolated yield from prepara-
tion according to Wright and Ziegler et al. (refs 10c and 13) with
sulfamide and HCl.
ꢀ
€
(7) (a) Chavez, P.; Kirsch, J.; Hovelmann, C. H.; Streuff, J.; Martınez-
ꢀ
Belmonte, M.; Escudero-Adan, E. C.; Martin, E.; Muniz, K. Chem. Sci. 2012,
3, 2375–2382. (b) Chavez, P.; Kirsch, J.; Streuff, J.; Muniz, K. J. Org.
Chem. 2012, 77, 1922–1930. (c) Cornwall, R. G.; Zhao, B.; Shi, Y. Org.
Lett. 2011, 13, 434–437. (d) Wang, B.; Du, H.; Shi, Y. Angew. Chem., Int.
Ed. 2008, 47, 8224–8227. (e)Zhao, B.;Yuan, W.; Du, H.;Shi, Y. Org. Lett.
2007, 9, 4943–4945. (f) Muniz, K.; Streuff, J.; Hovelmann, C. H.; Nunez,
A. Angew. Chem., Int. Ed. 2007, 46, 7125–7127. (g) Zabawa, T. P.;
Chemler, S. R. Org. Lett. 2007, 9, 2035–2038.
(8) McDonald, R. I.; Stahl, S. S. Angew. Chem., Int. Ed. 2010, 49,
5529–5532.
(9) For asymmetric diaminations in general, see: (a) Souto, J. A.;
The C,N-double bonds in thiadiazole-1,1-dioxides are quite
reactive toward nucleophilic additions,18 yet, asymmetric
reductions are unprecedented.19 A screening of various
protocols for such reactions20 including Ru(II)/binap-
€
ꢀ
Gonzalez, Y.; Iglesias, A.; Zian, D.; Lishchynskyi, A.; Muniz, K.
€
Chem.;Asian J. 2012, 7, 1103–1111. (b) Roben, C.; Souto, J. A.;
(15) Catalytic amounts of BF3 OEt2 led to incomplete conversion.
3
ꢀ
Gonzalez, Y.; Lishchynskyi, A.; Muniz, K. Angew. Chem., Int. Ed.
(16) Aimone, S. L.; Caram, J. A.; Mirifico, M. V.; Vasini, E. J. J.
Phys. Org. Chem. 2001, 14, 217–223.
2011, 50, 9478–9482. (c) Sequeira, F. C.; Turnpenny, B. W.; Chemler,
S. R. Angew. Chem., Int. Ed. 2010, 49, 6365–6368. (d) Cardona, F.; Goti,
A. Nat. Chem. 2009, 1, 269–275. (e) Du, H.; Zhao, B.; Yuan, W.; Shi, Y.
Org. Lett. 2008, 10, 4231–4234. (f) Du, H.; Yuan, W.; Zhao, B.; Shi, Y. J.
Am. Chem. Soc. 2007, 129, 11688–11689.
(10) (a) Lee, S. A.; Kwak, S. H.; Lee, K.-I. Chem. Commun. 2011, 47,
2372–2374. (b) Pansare, S. V.; Rai, A. N.; Kate, S. N. Synlett 1998, 623–
624. (c) Wright, J. B. J. Org. Chem. 1964, 29, 1905–1909.
(11) (a) Lumma, W. C.; Anderson, P. S.; Baldwin, J. J.; Bolhofer,
W. A.; Habecker, C. N.; Hirshfield, J. M.; Pietruszkiewicz, A. M.;
Randall, W. C.; Torchiana, M. L.; Britcher, S. F.; Clineschmidt, B. V.;
Denny, G. H.; Hirschmann, R.; Hoffman, J. M.; Phillips, B. T.; Streeter,
K. B. J. Med. Chem. 1982, 25, 207–210. (b) Algieri, A. A.; Luke, G. M.;
Standridge, R. T.; Brown, M.; Partyka, R. A.; Crenshaw, R. R. J. Med.
Chem. 1982, 25, 210–212. (c) Stegelmeier, H.; Niemers, E.; Rosentreter,
U.; Knorr, A.; Garthoff, B. (Bayer AG) D.O.S. 3309655, 1984; Chem.
Abstr. 1985, 102, 24633.
(17) (a) Castellano, E. E.; Piro, O. E.; Caram, J. A.; Mirıfico, M. V.;
ꢀ
Aimone, S. L.; Vasini, E. J.; Marquez-Lucero, M.; Glossman-Mitnik, D. J. Mol.
Struct. 2001, 597, 163–175. (b) Aimone, S. L.; Caram, J. A.; Mirifico, M. V.;
Vasini, E. J. J. Phys. Org. Chem. 2000, 13, 272–282. (c) Castellano, E. E.;
Piro, O. E.; Caram, J. A.; Mirifico, M. V.; Aimone, S. L.; Vasini, E. J.;
Glossman, M. D. J. Phys. Org. Chem. 1998, 11, 91–100.
(18) For examples, see refs 10b and 17b as well as: (a) Luo, Y.;
Hepburn, H. B.; Chotsaeng, N.; Lam, H. W. Angew. Chem., Int. Ed.
2012, 51, 8309–8313. (b) Mirıfico, M. V.; Caram, J. A.; Piro, O. E.; Vasini,
E. J. J. Phys. Org. Chem. 2007, 20, 1081–1087.
(19) For Rh(TsDPEN)-catalyzed hydrogenations of 3-aryl-1,2,5-
thiadiazoline-1,1-dioxides, see ref 10a. For Ru(TsDPEN)-catalyzed
hydrogenations of 1-arylpropan-1,2-diones, see: (a) Koike, T.; Murata,
K.; Ikariya, T. Org. Lett. 2000, 2, 3833–3836. For asymmetric hydro-
genations of other related compounds, see: (b) Lee, H.-K.; Kang, S.;
Choi, E. B. J. Org. Chem. 2012, 77, 5454–5460. (c) Yu, C.-B.; Wang, D.-
W.; Zhou, Y.-G. J. Org. Chem. 2009, 74, 5633–5635. (d) Yang, Q.;
Shang, G.; Gao, W.; Deng, J.; Zhang, X. Angew. Chem., Int. Ed. 2006,
45, 3832–3835. (e) Mao, J.; Baker, D. C. Org. Lett. 1999, 1, 841–843. (f)
Ahn, K. H.; Ham, C.; Kim, S.-K.; Cho, C.-W. J. Org. Chem. 1997, 62,
7047–7048. (g) Oppolzer, W.; Wills, M.; Starkemann, C.; Bernardinelli,
G. Tetrahedron. Lett. 1990, 31, 4117–4120.
(12) A SciFinder search revealed more than 45 patent documents
ꢀ
describing thiadiazole-1,1-dioxides since 2000. For a review, see: Aran,
V. J.; Goya, P.; Ochoa, C. Adv. Heterocycl. Chem. 1988, 44, 81–197.
(13) Vorreither, H. K.; Ziegler, E. Monatsh. Chem. 1965, 96, 216–219.
(14) Becke-Goehring, M.; Wunsch, G. Liebigs Ann. Chem. 1958, 618,
43–52.
Org. Lett., Vol. 15, No. 4, 2013
801