Journal of the American Chemical Society
Communication
Morken, J. P. J. Org. Chem. 2011, 76, 9102. (f) Schuster, C. H.; Li, B.;
Morken, J. P. Angew. Chem., Int. Ed. 2011, 50, 7906. (g) Burks, H. E.;
Kliman, L. T.; Morken, J. P. J. Am. Chem. Soc. 2009, 131, 9134. Allene
diboration: (h) Burks, H. E.; Liu, S.; Morken, J. P. J. Am. Chem. Soc.
2007, 129, 8766. (i) Woodward, A.; Burks, H. E.; Chan, L. M.;
Morken, J. P. Org. Lett. 2005, 7, 5505. (j) Pelz, N.; Woodward, A. R.;
Burks, H. E.; Sieber, J. D.; Morken, J. P. J. Am. Chem. Soc. 2004, 126,
16328. For related alkyne double hydroboration: (k) Jung, H.-Y.; Yun,
J. Org. Lett. 2012, 14, 2606. (l) Lee, Y.; Jang, H.; Hoveyda, A. H. J. Am.
Chem. Soc. 2009, 131, 18234.
complex molecular structures. The validity of this assertion was
probed by targeting the aglycon of the glycoterpene natural
product pumilaside B.12 As shown in Scheme 4, a carbocyclic
Scheme 4. Synthesis of Pumilaside Aglycon
(2) For reviews of catalytic diboration, see: (a) Dang, L.; Lin, Z.;
Marder, T. B. Chem. Commun. 2009, 3987. (b) Ramírez, J.; Lillo, V.;
Segarra, A. M.; Fernandez, E. C. R. Chemie 2007, 10, 138. (b) Burks,
́
H. E.; Morken, J. P. Chem. Commun. 2007, 4717. (c) Beletskaya, I. B.;
Moberg, C. Chem. Rev. 2006, 106, 2320. (d) Ishiyama, T.; Miyaura, N.
Chem. Rec. 2004, 3, 271. (d) Marder, T. B.; Norman, N. C. Top. Catal.
1998, 5, 63.
(3) Kliman, L. T.; Mlynarski, S. N.; Ferris, G. E.; Morken, J. P. Angew.
Chem., Int. Ed. 2012, 51, 521.
(4) For intramolecular carbonyl allylboration, see: (a) Koert, U. Org.
Lett. 2006, 8, 3829. (b) Ballard, E. C.; Morken, J. P. Synthesis 2004, 9,
1321. (c) Kurihara, K.; Yamada, A.; Takahashi, M.; Takahashi, Y.;
Miyaura, N. Tetrahedron 2003, 59, 537. (d) Kruger, J.; Hoffman, R. W.
̈
J. Am. Chem. Soc. 1997, 119, 7499. (e) Yamomoto, Y.; Ahiko, T.;
Ishiyama, T.; Miyaura, N. Chem. Lett. 1997, 811. (f) Hoffmann, R. W.;
intermediate (8) bearing appropriate substitution and stereo-
chemistry was readily constructed by diboration of 7 followed
by addition to 4-oxovaleraldehyde. This delivered trans 1,5-diol
8 in good yield and excellent stereoselection. Ring-closing
metathesis with the Hoveyda-Grubbs NHC catalyst13 followed
by cyclopropanation furnished 10. Conversion of the
dibromocyclopropane 10 to the dimethylcyclopropane target
was easily accomplished by treatment with lithium dimethyl-
cuprate followed by methyl iodide.14 The compound so
obtained was spectroscopically identical with the compound
reported by Kitajima and co-workers.15
In conclusion, a strategy for constructing highly substituted
and stereochemically complex functionalized cyclohexanols
from simple precursors has been established. These motifs
should enable rapid construction of complex molecular targets,
and the utility of these methods will be further probed in due
course.
Hense, A. Liebigs Ann. 1996, 1283. (g) Hoffman, R. W.; Munster, I.
̈
Tetrahedron Lett. 1995, 36, 1431. (h) Suzuki, A. J. Chem. Soc., Chem.
Commun. 1994, 4, 467. (i) Watanabe, T.; Miyaura, N.; Suzuki, A. J.
Organomet. Chem. 1993, 4444. (j) Bandur, N. G.; Bruckner, D.;
̈
Hoffmann, R. W.; Watanabe, T.; Sakai, M.; Miyaura, N.; Hoffmann, R.
W.; Sander, T.; Hense, A. Liebigs Ann. Chem. 1993, 771. (k) Hoffmann,
R. W.; Sander, T.; Hoffmann, R. W. Liebigs Ann. Chem. 1993, 1193.
(l) Niel, G. Liebigs Ann. Chem. 1991, 1195.
(5) (a) dos Santos, C.; Bahlaouan, Z.; Kassimi, K. E.; Troufflard, C.;
́
Hendra, F.; Delarue-Cochin, S.; Zahouily, M.; Cave, C.; Joseph, D.
Heterocycles 2007, 73, 751. (b) Enkisch, C.; Schneider, C. Eur. J. Org.
Chem. 2009, 32, 5549.
(6) (a) Brichford, N. L.; Henderson, J. L. J. Org. Chem. 2002, 67,
4236. (b) Omoto, K.; Fujimoto, H. J. Org. Chem. 1998, 63, 8331.
(c) Gennari, C.; Fioavanzo, E.; Bernardi, A.; Vulpetti, A. Tetrahedron
1994, 50, 8815. (d) Vulpetti, A.; Gardner, M.; Gennari, C.; Bernardi,
A.; Goodman, J. M.; Paterson, I. J. Org. Chem. 1993, 58, 1711.
(e) Gajewski, J. J.; Bician, W.; Brown, H. C.; Racherla, U. S.; Pellechia,
P. J. J. Org. Chem. 1990, 55, 1868. (f) Li, Y.; Houk, K. N. J. Am. Chem.
Soc. 1989, 111, 1236.
ASSOCIATED CONTENT
* Supporting Information
Procedures, characterization and spectral data. This material is
■
S
(7) (a) Baldry, K. W.; Gordon, M. H.; Hafter, R.; Robinson, M. J. T.
Tetrahedron 1976, 32, 2589. (b) Stowlow, R. D.; Giants, T. W. Chem.
Commun. 1971, 11, 528.
(8) (a) Kleinpeter, E.; Heydenreich, M.; Koch, A.; Linker, T.
Tetrahedron 2012, 68, 2363. (b) Woerpel, K. A. J. Org. Chem. 2011, 76,
7706. (c) Baghdasarian, G.; Woerpel, K. A. J. Org. Chem. 2006, 71,
6851. (d) Dibble, D. J.; Ziller, J. W.; Woerpel, K. A. J. Org. Chem.
2011, 76, 7706.
AUTHOR INFORMATION
Corresponding Author
Notes
■
The authors declare no competing financial interest.
(9) Freitas, M. P.; Tormena, C. F.; Olivira, P. R.; Rittner, R. J. Mol.
Struc. (Theochem) 2002, 589−590, 147.
(10) Takahashi, O.; Yamasaki, K.; Kohno, Y.; Ueda, K.; Suezawa, H.;
Nishio, M. Bull. Chem. Soc. Jpn. 2009, 82, 272.
(11) (a) Kihara, M.; Iwai, Y.; Nagao, Y. Hetereocycles 1995, 41, 2279.
(b) Nagao, Y.; Goto, M. Hetereocycles 1995, 41, 883.
(12) Kitajima, J.; Kimizuka, K.; Tanaka, Y. Chem. Pharm. Bull. 2000,
48, 77.
ACKNOWLEDGMENTS
■
The NIH (GM-59471) is acknowledged for financial support
and AllyChem is acknowledged for a donation of B2(pin)2. We
thank Dr. Bo Li of the Boston College crystallography lab for
crystal structure analysis.
(13) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am.
Chem. Soc. 2000, 122, 8168.
REFERENCES
■
(14) (a) Simmons, B.; Walji, A. M.; MacMillan, D. W. C. Angew.
Chem., Int. Ed. 2009, 48, 4349. (b) Rigby, J. H.; Bellemin, A. Synthesis
1988, 188.
(1) Enantioselective alkene diboration: (a) Kliman, L. T.; Mlynarski,
S. N.; Morken, J. P. J. Am. Chem. Soc. 2009, 131, 13210. (b) Trudeau,
S.; Morgan, J. B.; Shrestha, M.; Morken, J. P. J. Org. Chem. 2005, 70,
9538. (c) Miller, S. P.; Morgan, J. B.; Nepveuz, F. J. V.; Morken, J. P.
Org. Lett. 2004, 6, 131. (d) Morgan, J. B.; Miller, S. P.; Morken, J. P. J.
Am. Chem. Soc. 2003, 125, 8702. Diene diboration: (e) Hong, K.;
1
(15) While the 13C NMR and H NMR spectra of the enantiomeri-
cally enriched material prepared by us are identical to that reported by
Kitajima, the rotation is increased (+49.95° vs +10°) and the melting
2503
dx.doi.org/10.1021/ja400506j | J. Am. Chem. Soc. 2013, 135, 2501−2504