Page 3 of 47
ChemComm
These observations stress the importance of a careful design of
the formation of these fibrillar aggregates. These results highlight
the aliphatic spacers. However, the contribution of intermolecular 60 the potential of combining hydrogen bonding and hydrophobic
hydrogen bonds to the stabilisation of the aggregates remains
unclear. Therefore, we assessed the presence of hydrogen
bonding in the aggregates of 1 in water by the addition of
hexafluoroisopropanol (HFIP), a denaturant that is capable of
interfering with intermolecular hydrogen bonds.16 Upon addition
of small aliquots of HFIP to a solution of 1 in water (ESI, Fig. S4)
the absorption maximum gradually shifts to lower wavelengths,
10 indicating depolymerization of the aggregates. The changes in the
UV spectra upon addition of HFIP are comparable to those
observed upon raising the temperature. As such, it is likely that
hydrogen bonds play an important role in the stabilisation of the
aggregates of 1 and (S)ꢀ2.
effects for the formation of supramolecular polymers in water and
contribute to the development of general guidelines for the
rational formation of oneꢀdimensional assemblies in water.
5
Notes and references
65 a Institute for Complex Molecular Systems, Eindhoven University of
Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
Eꢀmail: e.w.meijer@tue.nl, a.palmans@tue.nl;
Fax: +31 (0)40 2451036; Tel: +31 (0)40 2473101
† Electronic Supplementary Information (ESI) available: [Experimental
70 details, characterization by UV and fluorescence spectroscopy and cryoꢀ
TEM.]. See DOI: 10.1039/b000000x/
15
Additional proof for the importance of the hydrogen bonds in
the aggregate formation was obtained by methylation of the BTA
amide groups in 3. As a result, 3 cannot form intermolecular
hydrogen bonds26 and the potential aggregation of 3 can only be
the result of its amphiphilic nature. The aggregation behaviour of
1
C. Fouquey, J.ꢀM. Lehn and A.ꢀM. Levelut, Adv. Mater., 1990, 2,
254ꢀ257.
T. Aida, E. W. Meijer and S. I. Stupp, Science, 2012, 335, 813ꢀ817.
A. Bertrand, F. Lortie and J. Bernard, Macromol. Rap. Commun.,
2012, 33, 2062-2091.
L. Brunsveld, B. J. B. Folmer, E. W. Meijer and R. P. Sijbesma,
Chem. Rev., 2001, 101, 4071ꢀ4097.
X. Yan, F. Wang, B. Zheng and F. Huang, Chem. Soc. Rev., 2012, 41,
6042ꢀ6065.
T. Rehm and C. Schmuck, Chem. Commun., 2008, 801ꢀ813.
L. A. Estroff and A. D. Hamilton, Chem. Rev., 2004, 104, 1201ꢀ1217.
M. de Loos, J. H. van Esch, R. M. Kellogg and B. L. Feringa,
Tetrahedron, 2007, 63, 7285ꢀ7301.
Y. Yan, Y. Lin, Y. Qiao and J. Huang, Soft Matter, 2011, 7, 6385ꢀ
6398.
75
80
85
90
2
3
4
5
20 3 in water and methanol was studied by UVꢀvis spectroscopy.
The UV spectrum of 3 does not change upon changing the solvent
from water to methanol (ESI, Fig. S6). These results show that 3
does not form supramolecular polymers in either one of the
solvents at the applied concentration, indicating the importance of
25 hydrogen bonding for aggregate stabilization.
6
7
8
9
After studying the significance of intermolecular hydrogen
bond formation, the contribution of hydrophobic effects to the
selfꢀassembly process was selectively assayed by probing the
polarity of the hydropobic pocket using the solvatochromic dye
30 Nile Red. In pure water Nile Red displays low fluorescence
intensity, which increases in more apolar solvents. Furthermore,
the fluorescence wavelength depends on the polarity of the
environment. This tool has been widely used to probe the
formation of selfꢀassembled structures with a hydrophobic core.27
35 Selfꢀassembly of BTA molecules in water will result in a strong
enhancement of fluorescent intensity due to probe encapsulation
and the emission wavelength will provide information about the
polarity of the hydrophobic pocket.16 Compared to pure water, the
fluorescence intensity of Nile Red in a solution of 1 increases two
40 orders of magnitude and a large blue shift is observed (Fig. 2D).
Interestingly, in a solution of (S)ꢀ2, the blue shift is smaller and
the fluorescence intensity is lower. Furthermore, compound 3
shows almost no difference with pure water, and only at higher
concentration (c = 5x10ꢀ5 M) a blue shift and increase in intensity
45 is observed (ESI, Fig. S7), indicating that the initial concentration
is below the critical aggregation concentration. The difference in
fluorescence wavelength and intensity confirms that 1 and (S)ꢀ2
adopt a different packing within the aggregates. The packing of 1
results in the formation of a more apolar hydrophobic domain,
50 even though it has fewer carbons in the spacer. The low
fluorescence increase of 3 further supports the importance of
stabilization of the aggregates by hydrogen bonding.
10 J. H. van Esch, Langmuir, 2009, 25, 8392ꢀ8394.
11 M. M. J. Smulders, A. P. H. J. Schenning and E. W. Meijer, J. Am.
Chem. Soc., 2008, 130, 606ꢀ611.
12 S. Cantekin, T. F. A. de Greef and A. R. A. Palmans, Chem. Soc.
Rev., 2012, 41, 6125ꢀ6137.
13 P. J. M. Stals, M. M. J. Smulders, R. MartinꢀRapun, A. R. A.
Palmans and E. W. Meijer, Chem. Eur. J., 2009, 15, 2071ꢀ2080.
95 14 E. Obert, M. Bellot, L. Bouteiller, F. Andrioletti, C. Lehenꢀ
Ferrenbach and F. Boue, J. Am. Chem. Soc., 2007, 129, 15601ꢀ15605.
15 N. Chebotareva, P. H. H. Bomans, P. M. Frederik, N. Sommerdijk
and R. P. Sijbesma, Chem. Commun., 2005, 4967ꢀ4969.
16 J. Boekhoven, A. M. Brizard, P. van Rijn, M. C. A. Stuart, R.
100
Eelkema and J. H. van Esch, Angew. Chem. Int. Ed., 2011, 50,
12285ꢀ12289.
17 P. Y. W. Dankers, T. M. Hermans, T. W. Baughman, Y. Kamikawa,
R. E. Kieltyka, M. M. C. Bastings, H. M. Janssen, N. A. J. M.
Sommerdijk, A. Larsen, M. J. A. van Luyn, A. W. Bosman, E. R.
Popa, G. Fytas and E. W. Meijer, Adv. Mater., 2012, 24, 2703ꢀ2709.
18 J. D. Hartgerink, E. Beniash and S. I. Stupp, Science, 2001, 294,
1684ꢀ1688.
105
19 P. Besenius, G. Portale, P. H. H. Bomans, H. M. Janssen, A. R. A.
Palmans and E. W. Meijer, P.N.A.S., 2010, 107, 17888ꢀ17893.
110 20 S. Lee, J.ꢀS. Lee, C. H. Lee, Y.ꢀS. Jung and J.ꢀM. Kim, Langmuir,
2011, 27, 1560ꢀ1564.
21 A. Bernet, R. Q. Albuquerque, M. Behr, S. T. Hoffmann and H.ꢀW.
Schmidt, Soft Matter, 2012, 8, 66ꢀ69.
22 R. C. T. Howe, A. P. Smalley, A. P. M. Guttenplan, M. W. R.
115
Doggett, M. D. Eddleston and J. C. Tan, G. O. Lloyd, Chem.
Commun., 2013, DOI: 10.1039/C2CC37428E.
23 E. E. Dormidontova, Macromolecules, 2004, 37, 7747ꢀ7761.
24 Y. Nakano, T. Hirose, P. J. M. Stals, E. W. Meijer and A. R. A.
Palmans, Chem. Sci., 2012, 3, 148ꢀ155.
In summary, we have rationally designed several waterꢀsoluble
BTA derivatives and studied their selfꢀassembly in water. These
55 molecules selfꢀassemble into supramolecular polymers,
micrometers in length and only a few nanometers in diameter.
UVꢀVis and fluorescence spectroscopy support that both
hydrophobic effects and hydrogen bonding play a crucial role in
120 25 E. J. Lenardao, G. V. Botteselle, F. de Azambuja, G. Perin and R. G.
Jacob, Tetrahedron, 2007, 63, 6671ꢀ6712.
26 M. M. J. Smulders, M. M. L. Nieuwenhuizen, M. Grossman, I. A. W.
Filot, C. C. Lee, T. F. A. de Greef, A. P. H. J. Schenning, A. R. A.
Palmans and E. W. Meijer, Macromolecules, 2011, 44, 6581ꢀ6587.
125 27 M. C. A. Stuart, J. C. van de Pas and J. B. F. N. Engberts, Journal of
Physical Org. Chem., 2005, 18, 929ꢀ934.
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3