ORGANIC
LETTERS
2013
Vol. 15, No. 6
1310–1313
Lewis Basic Selenium Catalyzed
Chloroamidation of Olefins Using Nitriles
as the Nucleophiles
Daniel Weiliang Tay,†,‡ Ivan Tan Tsoi,†,‡ Jun Cheng Er,† Gulice Yiu Chung Leung,*,‡
and Ying-Yeung Yeung*,†
Department of Chemistry, National University of Singapore, 3 Science Drive 3,
Singapore 117543, and A*STARÀInstitute of Chemical & Engineering Sciences,
11 Biopolis Way, Helios, #03-08, Singapore 138667
chmyyy@nus.edu.sg; leung_yiu_chung@ices.a-star.edu.sg
Received January 28, 2013
ABSTRACT
A Lewis base catalyzed chloroamidation of olefinic substrates was achieved using diphenyl selenide as the catalyst. The reaction conditions are
mild and suitable for a wide range of substrates including those which are acid labile.
Haloamidation of an olefin is a useful transformation
that produces a vicinal haloamide system, which provides
a reactive halogen handle for subsequent manipulation.1
In the literature, there are several methods for installing a
trans-1,2-haloamide/amine functionality directly from an
olefin.2 A common approach involves the use of a nitrogen
nucleophile to open a haliranium ion intermediate derived
from an olefin. To achieve the desired products with reason-
able reaction efficiency, Lewis acids are usually employed
to activate the stoichiometric halogen source in the olefin
halogenation process. For example, the use of strongly Lewis
acidic catalysts, such as SnCl4 and BF3•OEt2, in the bromo-
amidation of olefins using N-bromosuccinimide (NBS) as the
halogen source and acetonitrile as the nitrogen source has
been reported.3 Later, the Chandrakanth group reported
a similar procedure using InBr3 as the catalyst in the halo-
amidation of vinyl arene substrates.4 Herein, we disclose a
facile, mild, and efficient chloroamidation of olefins using
commercially available Lewis basic diphenyl selenide as
the catalyst with N-chlorosuccinimide (NCS) and aceto-
nitrile as the halogen and nitrogen source, respectively.
This method was found to be applicable to a wide range
† National University of Singapore.
‡ A*STARÀInstitute of Chemical & Engineering Science.
(1) (a) Kemp, J. E. G. In Comprehensive Organic Synthesis; Trost, B. M.,
Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 3, pp 471À513 and references
cited therein. (b) Griffith, D. A.; Danishefsky, S. J. J. Am. Chem. Soc. 1991,
113, 5863–5864. (c) Driguez, H.; Vermes, J. P.; Lessard, J. Can. J. Chem.
1978, 56, 119–130. (d) Doniher, F. A.; Butler, P. E. J. Org. Chem. 1968, 33,
4336–4340. (e) Orlek, B. S.; Stemp, G. Tetrahedron Lett. 1991, 32, 4045–
4048. (f) Barton, D. H. R.; Britten-Kelly, M. R.; Ferreira, D. J. Chem. Soc.,
Perkin Trans. 1 1978, 1090–1100. (g) Lessard, J.; Driguez, H.; Vermes, J.-P.
Tetrahedron Lett. 1970, 11, 4887–4891. (h) Qui, J.; Silverman, R. B. J. Med.
Chem. 2000, 43, 706–720.
(2) (a) Karur, S.; Kotti, S. R. S. S.; Xu, X.; Cannon, J. F.; Headley,
A. D.; Li, G. J. Am. Chem. Soc. 2003, 125, 13340–13341. (b) Li, G.; Wei,
H.-X.; Kim, S. H. Org. Lett. 2000, 2, 2249–2252. (c) Wei, H.-X.; Kim,
S. H.; Li, G. Tetrahedron 2001, 57, 3869–3973. (d) Chen, D.; Timmons,
C.; Chao, S.; Li, G. Eur. J. Org. Chem. 2004, 3097–3101. (e) Kotti, S. R.
S. S.; Xu, X.; Wang, Y.; Headley, A. D.; Li, G. Tetrahedron Lett. 2004,
45, 7209–7212. (f) Thakur, V. V.; Talluri, S. K.; Sudalai, A. Org. Lett.
2003, 5, 861–864. (g) Volonterio, A.; Bravo, P.; Panzeri, W.; Pesenti, C.;
Zanda, M. Eur. J. Org. Chem. 2002, 19, 3336–3340. (h) Bach, T.;
Schlummer, B.; Harms, K. Chem. Commun. 2000, 287–288. (i) Kirschning,
A.; Hashem, M. D.; Monenschein, H.; Rose, L.; Schonng, K. U.
J. Org. Chem. 1999, 64, 6522–6526. (j) Bellucci, G.; Bianchini, R.; Chiappe,
C. J. Org. Chem. 1991, 56, 3067–3073. (k) Jung, S. H.; Kohn, H. J. Am.
Chem. Soc. 1985, 107, 2931–2943. (l) Wang, Z. G.; Warren, J. D.; Dudkin,
V. Y.; Zhang, X.; Iserloh, U.; Visser, M.; Eckhardt, M.; Seeberger, P. H.;
Danishefsky, S. J. Tetrahedron 2006, 62, 4954–4978. (l) Li, G.; Kotti, S. R.
S. S.; Timmons, C. Eur. J. Org. Chem. 2007, 2745–2758. (m) Feng, X.
Angew. Chem., Int. Ed. 2010, 49, 6160–6164. (n) Cai, Y.; Liu, X.; Jiang, J.;
Chen, W.; Lin, L.; Feng, X. J. Am. Chem. Soc. 2011, 133, 5636–5639. Cai,
Y.; Liu, X.; Li, J.; Chen, W.; Wang, W.; Lin, L.; Feng, X. Chem.;Eur. J.
2011, 17, 14916–14921.
(3) Yeung, Y.-Y.; Gao, X.; Corey, E. J. J. Am. Chem. Soc. 2006, 128,
9644–9645.
(4) Yadav, J. S.; Reddy, B. V. S.; Chary, D. N.; Chandrakanth, D.
Tetrahedron Lett. 2009, 50, 1136–1138.
(5) For a review on Lewis base catalysis in organic synthesis, see: (a)
Denmark, S. E.; Beutner, G. L. Angew. Chem., Int. Ed. 2008, 47, 1560–
1638. (b) Denmark, S. E.; Collins, W. R. Org. Lett. 2007, 9, 3801. (c)
Denmark, S. E.; Burk, M. T. Proc. Natl. Acad. Sci. U.S.A. 2010, 107,
20655–20660. (d) Denmark, S. E.; Kalyani, D.; Collins, W. R. J. Am.
Chem. Soc. 2010, 132, 15752–15765.
r
10.1021/ol400249x
Published on Web 03/05/2013
2013 American Chemical Society