Journal of the American Chemical Society
Article
He, Y.; Zhuang, Y.; Li, L.; Wan, P.; Wang, P.; Zhou, Z.; Qiu, L. Adv.
Synth. Catal. 2012, 353, 2395. (i) Wang, S.; Li, J.; Miao, T.; Wu, W.;
Li, Q.; Zhuang, Y.; Zhou, Z.; Qiu, L. Org. Lett. 2012, 14, 1966.
(6) Bringmann’s asymmetric ring opening methodology: (a) Bring-
mann, G.; Hartung, H. Tetrahedron 1993, 49, 7891. (b) Bringmann,
G.; Kraus, J.; Breuning, M.; Tasler, S. Synthesis 1999, 525.
(7) Representative examples of application of asymmetric ring
opening concept to the total synthesis of natural products:
(a) Bringmann, G.; Hinrichs, J.; Pabst, T.; Henschel, P.; Peters, K.;
Peters, E.-M. Synthesis 2001, 155. (b) Bringmann, R.; Menche, D.
Angew. Chem., Int. Ed. 2001, 40, 1687. (c) Bringmann, G.; Menche, D.;
(16) For theoretical studies on phosphoric acid catalysts as acid/base
bifunctional catalysts, see: (a) Yamanaka, M.; Itoh, J.; Fuchibe, K.;
Akiyama, T. J. Am. Chem. Soc. 2007, 129, 6756. (b) Simon, L.;
́
Goodman, J. M. J. Am. Chem. Soc. 2008, 130, 8741. (c) Akiyama, T.;
Morita, H.; Bachu, P.; Mori, K.; Yamanaka, M.; Hirata, T. Tetrahedron
2009, 65, 4950. (d) Yamanaka, M.; Hirata, T. J. Org. Chem. 2009, 74,
3266. (e) Chen, X.-H.; Wei, Q.; Luo, S.-W.; Xiao, H.; Gong, L.-Z. J.
Am. Chem. Soc. 2009, 131, 13819. (f) Shi, F.-Q.; Song, B.-A. Org.
Biomol. Chem. 2009, 7, 1292. (g) Simn, L.; Goodman, J. M. J. Org.
Chem. 2010, 75, 589. (h) Zheng, C.; Sheng, Y.-F.; Li, Y.-X.; You, S.-L.
Tetrahedron 2010, 66, 2875. (i) Xu, S.; Wang, Z.; Li, Y.; Zhang, X.;
Wang, H.; Ding, K. Chem.Eur. J. 2010, 16, 3021. (j) Hirata, T.;
Yamanaka, M. Chem.Asian J. 2011, 6, 510. (k) Simon, L.; Goodman,
J. M. J. Org. Chem. 2011, 76, 1775. (l) He, L.; Chen, X.-H.; Wang, D.-
N.; Luo, S.-W.; Zhang, W.-Q.; Yu, J.; Ren, L.; Gong, L.-Z. J. Am. Chem.
Soc. 2011, 133, 13504. (m) Grayson, M. N.; Pellegrinet, S. C.;
Goodman, J. M. J. Am. Chem. Soc. 2012, 134, 2716.
Kraus, J.; Muhlbacher, J.; Peters, K.; Peters, E.-M.; Brun, R.; Bezabih,
̈
M.; Abegaz, B. M. J. Org. Chem. 2002, 67, 5595. (d) Ohmori, K.;
Tamiya, M.; Kitamura, M.; Kato, H.; Ohrui, M.; Suzuki, K. Angew.
Chem., Int. Ed. 2005, 44, 3871. (e) Tamiya, M.; Ohmori, K.; Kitamura,
M.; Arai, T.; Kato, H.; Oorui, M.; Suzuki, K. Chem.Eur. J. 2007, 13,
9791.
(8) (a) Eder, U.; Sauer, G.; Wiechert, R. Angew. Chem., Int. Ed. Engl.
1971, 10, 496. (b) Hajos, Z. G.; Parrish, D. R. J. Org. Chem. 1974, 39,
1615. (c) Micheli, R. A.; Hajos, Z. G.; Cohen, N.; Parrish, D. R.;
Poland, L. A.; Sciamanna, W.; Scott, M. A.; Wehrli, P. A. J. Org. Chem.
1975, 40, 675. (d) Hajos, Z. G.; Parrish, D. R. Organic Syntheses;
Wiley: New York, 1990; Collect Vol. VII, p 363. (e) Zhong, G.;
Hoffmann, T.; Lerner, R. A.; Danishefsky, S.; Barbas, C. F., III. J. Am.
Chem. Soc. 1997, 119, 8131. (f) List, B.; Lerner, R. A.; Barbas, C. F.,
III. Org. Lett. 1999, 1, 59. (g) Zhou, J.; Wakchaure, V.; Kraft, P.; List,
B. Angew. Chem., Int. Ed. 2008, 47, 7656. (h) Mori, K.; Katoh, T.;
Suzuki, T.; Noji, T.; Yamanaka, M.; Akiyama, T. Angew. Chem., Int. Ed.
2009, 48, 9652.
(17) For recent examples of asymmetric bromination, see: (a) Cai,
Y.; Liu, X.; Hui, Y.; Jiang, J.; Wang, W.; Chen, W.; Lin, L.; Feng, X.
Angew. Chem., Int. Ed. 2010, 49, 6160. (b) Murai, K.; Matsushita, T.;
Nakamura, A.; Fukushima, S.; Shimura, M.; Fujioka, H. Angew. Chem.,
Int. Ed. 2010, 49, 9174. (c) Zhou, L.; Tan, C. K.; Jiang, X.; Chen, F.;
Yeung, Y.-Y. J. Am. Chem. Soc. 2010, 132, 15474. (d) Cai, Y.; Liu, X.;
Jiang, J.; Chen, W.; Lin, L.; Feng, X. J. Am. Chem. Soc. 2011, 133, 5536.
(e) Rueping, M.; Ieawsuwan, W. Chem. Commun. 2011, 47, 11450.
(f) Chen, Z.-M.; Zhang, Q.-W.; Chen, Z.-H.; Li, H.; Tu, Y.-Q.; Zhang,
F.-M.; Tian, J.-M. J. Am. Chem. Soc. 2011, 133, 8818. (g) Li, H.; Zhang,
F.-M.; Tu, Y.-Q.; Zhang, Q.-W.; Chen, Z.-M.; Chen, Z.-H.; Li, J. Chem.
Sci. 2011, 2, 1839. (h) Tan, C. K.; Zhou, L.; Yeung, Y.-Y. Org. Lett.
2011, 13, 2738. (i) Zhou, L.; Chen, J.; Tan, C. K.; Yeung, Y.-Y. J. Am.
Chem. Soc. 2011, 133, 9164. (j) Huang, D.; Wang, H.; Xue, F.; Guan,
H.; Li, L.; Peng, X.; Shi, Y. Org. Lett. 2011, 13, 6350. (k) Denmark, S.
E.; Burk, M. T. Org. Lett. 2012, 14, 256. (l) Chen, J.; Zhou, L.; Tan, C.-
K.; Yeung, Y.-Y. J. Org. Chem. 2012, 77, 999. (m) Alix, A.; Lalli, C.;
Retailleau, P.; Masson, G. J. Am. Chem. Soc. 2012, 134, 10389.
(n) Paull, D. H.; Fang, C.; Donald, J. R.; Pansick, A. D.; Martin, S. F. J.
Am. Chem. Soc. 2012, 134, 11128. (o) Wang, Y.-W.; Wu, J.; Hoong, C.;
Rauniyar, V.; Toste, F. D. J. Am. Chem. Soc. 2012, 134, 12928.
(18) Hennecke’s group recently achieved the desymmetrization-type
asymmetric bromination catalyzed by chiral sodium phosphate:
́
(9) (a) Li, Z.; Fernandez, M.; Jacobsen, E. N. Org. Lett. 1999, 1,
1611. (b) Fukuta, Y.; Mita, T.; Fukuda, N.; Kanai, M.; Shibasaki, M. J.
Am. Chem. Soc. 2006, 128, 6312. (c) Mita, T.; Fukuda, N.; Roca, F. X.;
Kanai, M.; Shibasaki, M. Org. Lett. 2007, 9, 259. (d) Rowland, E. B.;
Rowland, G. B.; Rivera-Otero, E.; Antilla, J. C. J. Am. Chem. Soc. 2007,
129, 12084.
For the enantioselective desymmetrization of meso-
aziridines with various alcohols, see: (e) Hamilton, G. L.; Kanai, T.;
Toste, F. D. J. Am. Chem. Soc. 2008, 130, 14984. With TMSSPh and
TMSCN, see: (f) Sala, D. K.; Lattanzi, A. Org. Lett. 2009, 11, 3330.
(g) Miti, T.; Fujimori, I.; Wada, R.; Wen, J.; Kanai, M.; Shibasaki, M. J.
Am. Chem. Soc. 2005, 127, 11252. With ArSH, see: (h) Larson, S. E.;
Baso, J. C.; Li, G.; Antilla, J. C. Org. Lett. 2009, 11, 5186. With
TMSCl or TMSBr, see: (i) Ohmatsu, K.; Hamajima, Y.; Ooi, T. J. Am.
Chem. Soc. 2012, 134, 8794.
Hennecke, U.; Muller, C. H.; Frohlich, R. Org. Lett. 2011, 13, 860.
̈
̈
(19) For details of the screening for catalysts and reaction conditions,
see Supporting Information.
(10) Hayashi, T.; Niizuma, S.; Kamikawa, T.; Suzuki, N.; Uozumi, Y.
(20) We assumed that molecular sieve 13X trapped some impurities
(such as HBr, which might be released from NBP, and water), thereby
suppressing the formation of the hydrogen bond network. Actually, the
addition of H2O (10 mol %) to the reaction media decreased the
selectivity.
(21) Kagan, H. B.; Fiaud, J. C. Kinetic resolution. In Topics in
Stereochemistry; John Wiley & Sons, Inc.: New York, 1988; p 249.
(22) The benzyl group was easily deprotected under standard
hydrogenation conditions (Pd/C, H2, MeOH/EtOAc) without
sacrificing the bromo atom and axial chirality. For details, see
Supporting Information.
J. Am. Chem. Soc. 1995, 117, 9101.
(11) (a) Matsumoto, T.; Konegawa, T.; Nakamura, T.; Suzuki, K.
Synlett 2002, 122. (b) Okuyama, K.; Shingubara, K.; Tsujiyama, S.;
Suzuki, K.; Matsumoto, T. Synlett 2009, 941.
(12) Perron, Q.; Alexakis, A. Adv. Synth. Catal. 2010, 352, 2611.
(13) Recent examples of stereoselective synthesis of tetra-ortho-
substituted biaryls: (a) Meyers, A. I.; Nelson, T. D.; Moorlag, H.;
Raeson, D. J.; Meier, A. Tetrahedron 2004, 60, 4459. (b) Aoyama, H.;
Tokunaga, M.; Kiyosu, J.; Iwasawa, T.; Obora, Y.; Tsuji, Y. J. Am.
Chem. Soc. 2005, 127, 10474. (c) Nishida, G.; Suzuki, N.; Noguchi, K.;
Tanaka, K. Org. Lett. 2006, 8, 3489. (d) Bringmann, G.; Scharl, H.;
Maksimenka, K.; Radacki, K.; Braunschweig, H.; Wich, P.; Schmuck,
C. Eur. J. Org. Chem. 2006, 4349. (e) Ashizawa, T.; Tanaka, S.;
Yamada, T. Org. Lett. 2008, 10, 2521. (f) Guo, F.; Konkol, L. C.;
Thomson, R. J. J. Am. Chem. Soc. 2011, 133, 18. (g) Konkol, L. C.;
Guo, F.; Sarjeant, A. A.; Thomson, R. J. Angew. Chem., Int. Ed. 2011,
50, 9931. (h) Nushiro, K.; Kikuchi, S.; Yamada, T. Chem. Lett. 2013,
42, 165.
(14) Miller’s group recently reported the enantioselective synthesis of
biaryls by peptide-catalyzed asymmetric bromination: Gustafson, J. L.;
Lim, D.; Miller, S. J. Science 2010, 328, 1251.
(15) (a) Brandes, S.; Bella, M.; Kjarsgaard, A.; Jørgensen, K. A.
Angew. Chem., Int. Ed. 2006, 45, 1147. (b) Shirakawa, S.; Liu, K.;
Maruoka, K. J. Am. Chem. Soc. 2012, 134, 916.
(23) The methoxymethyl analogue exhibited low selectivity (59%
ee).
(24) The axial chirality of 3i, having the lowest configurational
stability in the series of 3, is fairly stable at room temperature. No
appreciable racemization was observed even after 10 days.
(25) See Supporting Information for details.
(26) The observation of linear effect suggests that a single molecule
of the catalyst is involved in this asymmetric reaction. See Supporting
Information for details.
(27) The employment of THF (polar solvent) in place of CH2Cl2/
toluene dramatically decreased the selectivity to less than 10%. This
result strongly supported the importance of the hydrogen bond
network in this asymmetric reaction.
F
dx.doi.org/10.1021/ja311902f | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX