Journal of the American Chemical Society
Page 4 of 5
1
2
3
4
5
6
7
8
Kirschning, A.; Michel, T.; Schaumann, E. Angew. Chem., Int. Ed.
Engl. 1994, 33, 217–218. (c) Smith, A. B., III; Boldi, A. M. J. Am.
Chem. Soc. 1997, 119, 6925–6926. (d) Smith, A. B., III; Pitram, S. M.
Org. Lett. 1999, 1, 2001–2004. (e) Smith, A. B., III; Pitram, S. M.;
Boldi, A. M.; Gaunt, M. J.; Sfouggatakis, C.; Moser, W. H. J. Am.
Chem. Soc., 2003, 125, 14435. (f) Smith, A. B., III; Kim, D.-S., Org.
Lett., 2004, 6, 1493. (g) Smith, A. B., III; Tong, R.‚ Org. Lett., 2010,
12, 1260. (h) Smith, A. B., III; Han, H.; Kim, W.-S., Org. Lett, 2011,
13, 3328. (i) Melillo, B.; Smith, A. B., III., Org. Lett., 2013, 15, 2282.
For dihalomethanes, see: (j) Shinokubo, H.; Miura, K.; Oshima, K.;
Utimoto, K. Tetrahedron 1996, 52, 503–514. (k) Shinokubo, H.;
Miura, K.; Oshima, K.; Utimoto, K. Tetrahedron Lett. 1993, 34,
1951–1954.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(4) (a) Nicewicz, D. A.; Johnson, J. S., J. Am. Chem. Soc., 2005,
127, 6170. (b) Nicewicz, D. A.; Satterfield, A. D.; Schmitt, D. C.;
Johnson, J. S., J. Am. Chem. Soc., 2008, 130, 17281, 17283. (c)
Schmitt, D. C.; Johnson, J. S., Org. Lett., 2010, 12, 944. (d) Schmitt,
D. C.; Lam, L.; Johnson, J. S., Org. Lett, 2011, 13, 5136.
(5) (a) Hong, K.; Liu, X.; Morken, J. P. J. Am. Chem. Soc. 2014,
136, 10581–10584. (b) Coombs, J. R.; Zhang, L.; Morken, J. P. J. Am.
Chem. Soc. 2014, 136, 16140–16143. (c) Joannou, M. V.; Moyer, B.
S.; Meek, S. J. J. Am. Chem. Soc. 2015, 137, 6176–6179. (d) Joannou,
M. V.; Moyer, B. S.; Goldfogel, M. J.; Meek, S. J. Angew. Chem., Int.
Ed. 2015, 54, 14141–14145. (e) Shi, Y.; Hoveyda, A. H. Angew.
Chem., Int. Ed. 2016, 55, 3455–3458. (f) Murray, S. A.; Green, J. C.;
Tailor, S. B.; Meek, S. J. Angew. Chem., Int. Ed. 2016, 55, 9065–
9069. (g) Park, J.; Lee, Y.; Kim, J.; Cho, S. H. Org. Lett. 2016, 18,
1210–1213. (h) Kim, J.; Park, S.; Park, J.; Cho, S. H. Angew. Chem.,
Int. Ed. 2016, 55, 1498–1501. (i) Ebrahim-Alkhalil, A.; Zhang, Z.-Q.;
Gong, T.-J.; Su, W.; Lu, X.-Y.; Xiao, B.; Fu, Y. Chem. Commun.
2016, 52, 4891–4893. (j) Kim, J.; Ko, K.; Cho, S. H. Angew. Chem.,
Int. Ed. 2017, 56, 11584–11588. For an example of deborylative 1,4-
addition of 1,1,1-tris-boronates, see: (k) Palmer, W. N.; Zarate, C.;
Chirik, P. J. J. Am. Chem. Soc. 2017, 139, 2589–2592.
aSee SI for details. b1H NMR yield (4:1 E-alkene isomers).
ASSOCIATED CONTENT
Supporting Information. Experimental procedures and spectral
and analytical data for all products. This material is available free
(6) (a) Matteson, D. S.; Moody, R. J. J. Am. Chem. Soc. 1977, 99,
AUTHOR INFORMATION
3196–3197. (b) Matteson, D. S.; Moody, R. J. Organometallics 1982,
1, 20–28. (c) Endo, K.; Hirokami, M.; Shibata, T. J. Org. Chem.
2010, 75, 3469–3472. (d) Coombs, J. R.; Zhang, L.; Morken, J. P.
Org. Lett. 2015, 17, 1708–1711. (e) Jo, W.; Kim, J.; Choi, S.; Cho, S.
H. Angew. Chem., Int. Ed. 2016, 55, 9690–9694.
Corresponding Author
Notes
(7) For examples of generation and trapping of diastereomeric
Authors declare no competing financial interests.
Cu(I)alkyl species, see: (a) Dieter, R. K.; Watson, R. T.; Goswami, R.
Org. Lett. 2004, 6, 253–256. (b) Dieter, R. K.; Oba, G.; Chandupatla,
K. R.; Topping, C. M.; Lu, K.; Watson, R. T. J. Org. Chem. 2004, 69,
3076–3086.
ACKNOWLEDGMENT
Financial support was provided by the National Institutes of
Health (R01GM116987, 3R01GM116987-01S1) and the Univer-
sity of North Carolina at Chapel Hill. AllyChem is acknowledged
for donations of B2(pin)2. We are grateful to Amber Charitos for
experimental assistance.
(
8
) Hatakeyama, T.; Nakamura, M.; Nakamura, E. J. Am. Chem.
Soc. 2008, 130, 15688–15701.
) 15 mol % CuCl was found to afford slightly improved yields
(
9
vs. 10 mol %. This is likely due to reaction mixture turning hetero-
genous as the reaction proceeds.
(
10) SFC analysis of 3 compared to 1, indicates there is no loss of
REFERENCES
enantiopurity during the epoxide-opening/Cu-catalyzed allylation
sequence.
(1) For examples of recent reviews, see: (a) Ho, T. L. Tandem Or-
ganic Reactions; Wiley: New York, 1992. (b) Parsons, P. J.; Penkett,
C. S.; Shell, A. J. Chem. Rev. 1996, 96, 195–206. (c) Tietze, L. F.
Chem. Rev. 1996, 96, 115–136. (d) Nicolaou, K. C.; Edmonds, D. J.;
Bulger, P. G. Angew. Chem., Int. Ed. 2006, 45, 7134–7186. (e)
Ramón, D. J.; Yus, M. Angew. Chem., Int. Ed. 2005, 44, 1602–1634.
(f) Ruijter, E.; Scheffelaar, R.; Orru, R. V. A. Angew. Chem., Int. Ed.
2011, 50, 6234–6246. (g) Marek, I.; Minko, Y.; Pasco, M.; Mejuch,
T.; Gilboa, N.; Chechik, H.; Das, J. P. J. Am. Chem. Soc. 2014, 136,
2682–2694.
(
11) Mlynarski, S. N.; Karns, A. S.; Morken, J. P. J. Am. Chem.
Soc. 2012, 134, 16449–16451.
12) Spangenberg, T.; Airiau, E.; Donnard, M.; Billet, M.; Mann,
A. Synlett 2008, 2008, 2859–2863.
13) Miura, T.; Nakahashi, J.; Murakami, M. Angew. Chem., Int.
Ed. 2017, 56, 6989–6993.
14) Blaisdell, T. P.; Morken, J. P. J. Am. Chem. Soc. 2015, 137,
8712–8715.
(
(
(
(
(
15) Rychnovsky, S. D. Chem. Rev. 1995, 95, 2021–2040.
16) An improvement in coupling efficiency was observed when
(
2
) Eppe, G.; Didier, D.; Marek, I. Chem. Rev. 2015, 115, 9175–
9206.
) For dithianes, see: (a) Bräuer, N.; Dreeßen, S.; Schaumann, E.
Tetrahedron Lett. 1999, 40, 2921–2924. (b) Fischer, M-R.;
reaction run on increased scale (e.g., 5 mmol and 99% yield).
17) Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93,
1307–1370.
(
(
3
ACS Paragon Plus Environment