X.-H. Ding et al. / Tetrahedron Letters 54 (2013) 1956–1959
1959
2. (a) Biard, J. F.; Guyot, S.; Roussakis, C.; Verbist, J. F.; Vercauteren, J.; Weber, J. F.;
Boukef, K. Tetrahedron Lett. 1994, 35, 2691–2694; (b) Weinreb, S. M. Acc. Chem.
Res. 2003, 36, 59–65.
3. Shirafuji, H.; Tuboya, S.; Ishimaru, T.; Harada, S. Jpn. Kokai Tokkyo Koho 94-
501916.
4. Sakamoto, K.; Tsujii, E.; Abe, F.; Nakanishi, T.; Yamashita, M.; Shigematsu, N.;
Izumi, S.; Okuhara, M. J. Antibiot. 1996, 49, 37–44.
5. For reviews on the synthesis of azaspiro[4,5]decane and related natural
products, see: (a) Dake, G. Tetrahedron 2006, 62, 3467–3492; (b) Weinreb, S.
M. Chem. Rev. 2006, 106, 2531–2549.
6. For the asymmetric synthesis of cylindricines, see: (a) Oppolzer, W.; Bochet, C.
G. Tetrahedron: Asymmetry 2000, 11, 4761–4770; (b) Abe, H.; Aoyagi, S.;
Kibayashi, C. J. Am. Chem. Soc. 2005, 127, 1473–1480; (c) Shibuguchi, T.; Mihara,
H.; Kuramochi, A.; Sakuraba, S.; Ohshima, T.; Shibasaki, M. Angew. Chem., Int.
Ed. 2006, 45, 4635–4637; (d) Swidorski, J. J.; Wang, J.; Hsung, R. P. Org. Lett.
2006, 8, 777–780; (e) Mihara, H.; Shibuguchi, T.; Kuramochi, A.; Ohshima, T.;
Shibasaki, M. Heterocycles 2007, 72, 421–438; (f) Zhang, X. M.; Wang, M.; Tu, Y.
Q.; Fan, C. A.; Jiang, Y. J.; Zhang, S. Y.; Zhang, F. M. Synlett 2008, 2831–2835.
7. For the asymmetric synthesis of lepadiformines, see: (a) Abe, H.; Aoyagi, S.;
Kibayashi, C. Angew. Chem., Int. Ed. 2002, 41, 3017–3020; (b) Sun, P.; Sun, C.;
Weinreb, S. M. J. Org. Chem. 2002, 67, 4337–4345; (c) Liu, J.; Hsung, R. P.; Peters,
S. D. Org. Lett. 2004, 6, 3989–3992; (d) Abe, H.; Aoyagi, S.; Kibayashi, C. J. Am.
Chem. Soc. 2005, 127, 1473–1480; (e) Lygo, B.; Kirton, H. M. E.; Lumley, C. Org.
Biomol. Chem. 2008, 6, 3085–3090; (f) Mei, S. L.; Zhao, G. Eur. J. Org. Chem. 2010,
1660–1668; (g) Perry, M. A.; Morin, M. D.; Slafer, B. W.; Wolckenhauer, S. A.;
Rychnovsky, S. D. J. Am. Chem. Soc. 2010, 132, 9591–9593; (h) Perry, M. A.;
Morin, M. D.; Slafer, B. W.; Rychnovsky, S. D. J. Org. Chem. 2012, 77, 3390–3400.
8. For the asymmetric synthesis of TAN1251A, see: (a) Snider, B. B.; Lin, H. Org.
Lett. 2000, 2, 643–646; (b) Wardrop, D. J.; Basak, A. Org. Lett. 2001, 3, 1053–
1056; (c) Mizutani, H.; Takayama, J.; Soeda, Y.; Honda, T. Tetrahedron Lett. 2002,
43, 2411–2414; (d) Nagumo, S.; Matoba, A.; Ishii, Y.; Yamaguchi, S.; Akutsu, N.;
Nishijima, H.; Nishida, A.; Kawahara, N. Tetrahedron 2002, 58, 9871–9877; (e)
Auty, J.; Churcher, I.; Hayes, C. J. Synlett 2004, 8, 1443–1445; (f) Mizutani, H.;
Takayama, J.; Soeda, Y.; Honda, T. Heterocycles 2004, 62, 343–355.
moderate enantiomeric excesses in ether solvents 1,4-dioxane, 2-
methyltetrahydrofuran, and diethyl ether (Table 1, entries 8–10).
Chloroform and 1,2-dichloroethane and more polar solvents, such
as acetone, DMF, and methanol were detrimental to the enantiose-
lectivity (Table 1, entries 11–15). Occasionally, a mixed solvent of
1,4-dioxane and toluene (v/v = 1/2) was found to give 68% ee of the
product at 0 °C (Table 1, entry 16). Thus, it was chosen as the media
for further temperature screening (Table 1, entries 17–19). These
experiments revealed that the best results with regard to chemical
yield and enantioselectivity were obtained at ꢀ20 °C (Table 1,
entry 18). Further decrease in temperature did not show any signif-
icant improvement on the selectivity (Table 1, entry 19). Finally,
the volume ratio of the solvents (1,4-dioxane and toluene) was
adjusted to 1:3, affording product 4 in 87% ee (Table 1, entry 20).
Under the above optimized conditions, we decided to further
modify the tertiary amine functionality of the catalyst (Table 2).
The diethylamine-substituted catalyst VII showed a negative influ-
ence on the selectivity (Table 2, entry 2), while pyrrolidine-thio-
urea catalyst VIII provided a slightly improved enantioselectivity
(Table 2, entry 3). With piperidine-thiourea catalyst IX, the enan-
tiomeric excess of the product 4 was proven to be the best, up to
89% (Table 2, entry 4). Whereas, a similar morpholine-thiourea
catalyst X resulted in a slight decrease of the enantioselectivity.
For provision of adequate materials for the total synthesis of
natural products, we then examined the scale-up capability of tar-
get transformation under the optimal reaction conditions. A five
9. For the asymmetric synthesis of FR901483, see: (a) Snider, B. B.; Lin, H. J. Am.
Chem. Soc. 1999, 121, 7778–7786; (b) Scheffler, G.; Seike, H.; Sorensen, E. J.
Angew. Chem., Int. Ed. 2000, 39, 4593–4595; (c) Ousmer, M.; Braun, N. A.;
Ciufolini, M. A. Org. Lett. 2001, 3, 765–767; (d) Ousmer, M.; Braun, N. A.;
Bavoux, C.; Perrin, M.; Ciufolini, M. A. J. Am. Chem. Soc. 2001, 123, 7534–7538;
(e) Kan, T.; Fujimoto, T.; Ieda, S.; Asoh, Y.; Kitaoka, H.; Fukuyama, T. Org. Lett.
2004, 6, 2729–2731; (f) Brummond, K. M.; Hong, S. P. J. Org. Chem. 2005, 70,
907–916; (g) Kaden, S.; Reissig, H. U. Org. Lett. 2006, 8, 4763–4766; (h) Gotchev,
D. B.; Comins, D. L. J. Org. Chem. 2006, 71, 9393–9402; (i) Asari, A.; Angelov, P.;
Auty, J. M.; Hayes, C. J. Tetrahedron Lett. 2007, 48, 2631–2634; (j) Simila, S. T.
M.; Martin, S. F. J. Org. Chem. 2007, 72, 5342–5349; (k) Carson, C. A.; Kerr, M. A.
Org. Lett. 2009, 11, 777–779; (l) Ieda, S.; Kan, T.; Fukuyama, T. Tetrahedron Lett.
2010, 51, 4027–4029; (m) Ma, A. J.; Tu, Y. Q.; Peng, J. B.; Dou, Q. Y.; Hou, S. H.;
Zhang, F. M.; Wang, S. H. Org. Lett. 2012, 14, 3604–3607; (n) Huo, H.-H.; Zhang,
H.-K.; Xia, X.-E.; Huang, P.-Q. Org. Lett. 2012, 14, 4834–4837.
10. For reviews on the organocatalytic asymmetric conjugate additions, see: (a)
Reyes, E.; Fernandez, M.; Uria, U.; Vicario, J. L.; Badia, D.; Carrillo, L. Curr. Org.
Chem. 2012, 16, 521–546; (b) Zhang, Y.; Wang, W. Catal. Sci. Technol. 2012, 2,
42–53; (c) Enders, D.; Wang, C.; Liebich, J. X. Chem. Eur. J. 2009, 15, 11058–
11076; (d) Li, N.; Xi, G. H.; Wu, Q. H.; Liu, W. H.; Ma, J. J.; Wang, C. Chin. J. Org.
Chem. 2009, 29, 1018–1038; (e) Vicario, J. L.; Badia, D.; Carrillo, L. Synth. Stuttg.
2007, 14, 2065–2092.
gram-scale reaction between
1 and 2 was attempted with
10 mol % loading of the catalyst IX. To our delight, the conjugated
addition product was obtained in 76% yield and 84% ee (Scheme 1).
Afterward, the nitro group of 3 was reduced to amine with zinc
dust in HOAc,21 which spontaneously underwent an intramolecu-
lar reductive amination with 20-aldehyde to give the spiro-pyrrol-
idine ring. Therefore, we completed a concise catalytic asymmetric
synthesis of 1-azaspiro[4.5]decan-6-one, a potential useful chiral
building block in various total syntheses, in two steps from the
simple starting materials. In order to determine the absolute con-
figuration, product 5 was converted into the known derivative 6,22
whose N-acyl derivatives were reported as potent opioid receptor
ligands.23 Accordingly, the aza-quaternary center of the 1-azaspi-
ro[4.5]decane ring system was determined to be of S configuration.
According to the absolute configuration of the product, mecha-
nism of the bifunctional catalysis was proposed as Scheme 2. The
enantioselectivity might be caused by the steric hindrance
between the aryl moiety of the catalyst and the cyclohexanone.
In conclusion, we have developed a gram-scale enantioselective
11. For
a review on the organocatalytic reactions involving nitroalkanes and
nitroalkenes, see: Roca-Lopez, D.; Sababa, D.; Delso, I.; Herrera, R. P.; Tejero, T.;
Merino, P. Tetrahedron: Asymmetry 2010, 21, 2561–2601.
12. (a) Latvala, A.; Stanchev, S.; Linden, A.; Hesse, M. Tetrahedron: Asymmetry 1993,
4, 173–176; (b) Lu, R. J.; Yan, Y. Y.; Wang, J. J.; Du, Q. S.; Nie, S. Z.; Yan, M. J. Org.
Chem. 2011, 76, 6230–6239.
13. Gao, Y.; Ren, Q.; Siau, W. Y.; Wang, J. Chem. Commun. 2011, 47, 5819–5821.
14. Jorres, M.; Schiffers, I.; Atodiresei, I.; Bolm, C. Org. Lett. 2012, 14, 4518–4521.
15. (a) Lorenziriatsch, A.; Nakashita, Y.; Hesse, M. Helv. Chim. Acta 1984, 67, 249–
253; (b) Giorgi, G.; Miranda, S.; Ruiz, M.; Lopez-Alvarado, P.; Menendez, J. C.;
Rodriguez, J. Eur. J. Org. Chem. 2011, 11, 2101–2110.
organocatalytic Michael addition of a-nitrocyclohexanone to acro-
lein, with 84% ee.24 This protocol offers a concise two-step chiral
synthesis of 1-azaspiro[4.5]decan-6-one, a potential useful chiral
building block in the synthesis of a variety of natural alkaloids.
Acknowledgements
16. Miranda, S.; Lopez-Alvarado, P.; Giorgi, G.; Rodriguez, J.; Avendano, C.;
Menendez, J. C. Synlett 2003, 14, 2159–2162.
17. Wu, F.; Hong, R.; Khan, J.; Liu, X.; Deng, L. Angew. Chem., Int. Ed. 2006, 45, 4301–
4305.
18. Vakulya, B.; Varga, S.; Csampai, A.; Soos, T. Org. Lett. 2005, 7, 1967–1969.
19. Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672–12673.
20. Qian, Y.; Ma, G.; Lv, A.; Zhu, H.-L.; Zhao, J.; Rawal, V. H. Chem. Commun. 2010,
46, 3004–3006.
Financial supports from MOST 973 project (2010CB833200),
NSFC grant (21032002), and National Science Fund for Talent
Training in Basic Science (No. J1103310) are greatly appreciated.
Supplementary data
21. Zou, W.; Wu, A.-T.; Bhasin, M.; Sandbhor, M.; Wu, S.-H. J. Org. Chem. 2007, 72,
2686–2689.
22. Sawamura, M.; Nakayama, Y.; Tang, W.-M.; Ito, Y. J. Org. Chem. 1996, 61, 9090–
9096.
23. Fujimoto, R. A.; Boxer, J.; Jackson, R. H.; Simke, J. P.; Neale, R. F.; Snowhill, E. W.;
Barbaz, B. J.; Williams, M.; Sills, M. A. J. Med. Chem. 1989, 32, 1259–1265.
Supplementary data associated with this article can be found, in
24. Generality of the reaction between a-nitrocyclohexanone and a variety of a,b-
References and notes
unsaturated aldehydes was also explored. Unfortunately, the yields of the
Michael adducts dropped dramatically under the optimized conditions. It is
speculated that additional substituents of acrylaldehyde might unfavorably
interact with the catalyst and make the transition state unstable.
1. Blackman, A. J.; Li, C.; Hockless, D. C. R.; Skelton, B. W.; White, A. H. Tetrahedron
1993, 49, 8645–8656.