.
Angewandte
Communications
h) G. Kochendoerfer, Expert Opin. Biol. Ther. 2003, 3, 1253 –
1261; i) Y.-S. Wang, S. Youngster, M. Grace, J. Bausch, R.
Bordens, D. F. Wyss, Adv. Drug Delivery Rev. 2002, 54, 547 – 570;
j) P. Bailon, A. Palleroni, C. A. Schaffer, C. L. Spence, W.-J.
Fung, J. E. Porter, G. K. Ehrlich, W. Pan, Z.-X. Xu, M. W. Modi,
A. Farid, W. Berthold, Bioconjugate Chem. 2001, 12, 195 – 202;
k) F. M. Veronese, P. Caliceti, O. Schiavon, J. Bioact. Compat.
Polym. 1997, 12, 196 – 207.
[2] a) B. Scrosati, J. Garche, J. Power Sources 2010, 195, 2419 – 2430;
b) P. Arora, Z. Zhang, Chem. Rev. 2004, 104, 4419 – 4462; c) J. Y.
Song, Y. Y. Wang, C. C. Wan, J. Power Sources 1999, 77, 183 –
197.
[3] a) A. C. French, A. L. Thompson, B. G. Davis, Angew. Chem.
2009, 121, 1274 – 1278; Angew. Chem. Int. Ed. 2009, 48, 1248 –
1252; b) S. A. Ahmed, M. Tanaka, J. Org. Chem. 2006, 71, 9884 –
9886.
[4] The molecular design of 1 based on molecular modeling is
explained in the Supporting Information, Figure S1.
[5] For examples of amphiphilic polymer assemblies for the
manipulation of proteins, see: Y. Sasaki, K. Akiyoshi, Chem.
Rec. 2010, 10, 366 – 376.
[6] Interestingly, without any template, the reaction between 5 and 6
preferentially gave cyclic products 13 and 14 (40% yield), and
the polymerized products were obtained only in < 3% yield, see
the Supporting Information.
[7] a) M. J. Hey, S. M. Ilett, G. Davidson, J. Chem. Soc. Faraday
Trans. 1995, 91, 3897 – 3900; b) M. Bjçrling, G. Karlstrçm, P.
Linse, J. Phys. Chem. 1991, 95, 6706 – 6709; c) H. Matsuura, K.
Fukuhara, J. Mol. Struct. 1985, 126, 251 – 260; d) G. Karlstrçm, J.
Phys. Chem. 1985, 89, 4962 – 4964; e) S. Saeki, N. Kuwahara, M.
Nakata, M. Kaneko, Polymer 1976, 17, 685 – 689; f) H. Matsuura,
T. Miyazawa, J. Polym. Sci. Part A 1969, 7, 1735 – 1744.
[8] N. E. Jacobsen in NMR Spectroscopy Explained: Simplified
Theory, Applications and Examples for Organic Chemistry and
Structural Biology, Wiley-InterScience, Hoboken, 2007, pp. 489 –
550.
Figure 6. Fluorescence anisotropy changes of lysozyme (0.70 mm) in
the absence (blue) and presence of 1 (red, 0.20 mm) or 2 (orange,
0.20 mm) in PBS buffer (pH 7.4) upon an increase in temperature
from 208C to 988C. Excitation and emission wavelengths are 295 and
335 nm, respectively.
aggregation. It should be noted here that because 2 stays
hydrated below 808C, denatured lysozyme is likely to
aggregate before being bound by 2.
In summary, we have demonstrated that the structured
monodisperse PEG analogue 1, having a triangular structure,
has a low dehydration temperature compared with the
corresponding linear PEGs, and suppresses protein thermal
aggregation with high efficiency. Thus, the structuring of PEG
from a linear geometry into higher-dimensional ones affects
the physicochemical nature of PEGs to bring about the
distinctive biochemical effect of 1. We believe that detailed
studies using monodisperse PEG analogues with diverse
structures offer a better and reliable understanding of the
characteristics of PEGs and these characteristics can be
exploited to explore new applications of PEG-related com-
pounds. Further studies on the capability of 1 to suppress the
aggregation of other proteins and on other structured PEGs
are now in progress.
[9] As 13C NMR signals corresponding to C2 and C4 of 1 overlap at
808C, the VT HMBC experiment was performed at 608C.
[10] a) C. Lange, R. Rudolph, Curr. Pharm. Biotechnol. 2009, 10,
408 – 414; b) T. Arakawa, D. Ejima, K. Tsumoto, N. Obeyama, Y.
Tanaka, Y. Kita, S. N. Timasheff, Biophys. Chem. 2007, 127, 1 – 8;
c) K. Shiraki, M. Kudou, S. Nishikori, H. Kitagawa, T. Imanaka,
M. Takagi, Eur. J. Biochem. 2004, 271, 3242 – 3247; d) T.
Arakawa, K. Tsumoto, Biochem. Biophys. Res. Commun. 2003,
304, 148 – 152.
[11] J. Cavanagh, W. J. Fairbrother, A. G. Palmer III, M. Rance, N. J.
Skelton, Protein NMR Spectroscopy: Principles and Practice,
2nd ed., Academic Press, San Diego, 2006.
[12] Y. Wang, T. C. Bjorndahl, D. S. Wishart, J. Biomol. NMR 2000,
17, 83 – 84.
Received: August 14, 2012
Published online: January 30, 2013
Keywords: enzymes · macrocycles · polyethylene glycol ·
.
protein manipulation · supramolecular chemistry
[1] a) K. Knop, R. Hoogenboom, D. Fischer, U. S. Schubert, Angew.
Chem. 2010, 122, 6430 – 6452; Angew. Chem. Int. Ed. 2010, 49,
[13] White precipitates were observed in the NMR tube.
[14] a) J. C. Cheetham, P. J. Artymiuk, D. C. Phillips, J. Mol. Biol.
1992, 224, 613 – 628; b) N. C. J. Strynadka, M. N. G. James, J.
Mol. Biol. 1991, 220, 401 – 424.
[15] An FA value greater than 0.4 is likely due to the presence of
scattered light by the precipitates of lysozyme. J. R. Lakowicz, in
Principles of Fluorescence Spectroscopy, 3rd ed., Springer, New
York, 2006.
ˇ
6288 – 6308; b) S. Jevsevar, M. Kunstelj, V. G. Porekar, Biotech-
nol. J. 2010, 5, 113 – 128; c) M. J. Joralemon, S. McRae, T.
Emrick, Chem. Commun. 2010, 46, 1377 – 1393; d) D. da Silva
Freitas, J. Abrah¼o-Neto, Int. J. Pharm. 2010, 392, 111 – 117; e) J.-
B. Park, Y. M. Kwon, T.-Y. Lee, R. Brim, M.-C. Ko, R. K.
Sunahara, J. H. Woods, V. C. Yang, J. Controlled Release 2010,
142, 174 – 179; f) S. M. Ryan, G. Mantovani, X. Wang, D. M.
Haddleton, D. J. Brayden, Expert Opin. Drug Delivery 2008, 5,
371 – 383; g) C. S. Fishburn, J. Pharm. Sci. 2008, 97, 4167 – 4183;
2434
ꢀ 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2013, 52, 2430 –2434