R. B. Kargbo et al. / Tetrahedron Letters 54 (2013) 2018–2021
2021
(f) Dzwiniel, T. L.; Stryker, J. M. J. Am. Chem. Soc. 2004, 126, 9184; (g) Soto, S.;
Vaz, E.; Dell’Aversana, C.; Alvarez, R.; Altucci, L.; de Lera, A. R. Org. Biomol. Chem.
2012, 10, 2101; (h) Enders, D.; Lenzen, A.; Raabe, G. Angew. Chem., Int. Ed. 2005,
44, 3766. and references therein.
13. (a) Hayashi, R.; Cook, G. R. Org. Lett. 2007, 9, 1311; (b) Kaneko, M.; Hayashi, R.;
Cook, G. R. Tetrahedron Lett. 2007, 48, 7085; (c) Cook, G. R.; Hayashi, R. Org. Lett.
2006, 8, 1045.
14. (a) Scott, L. E.; Orvig, C. Chem. Rev. 2009, 109, 4885; (b) Gallagher, W. P.;
Terstiege, I.; Maleczka, R. E., Jr. J. Am. Chem. Soc. 2001, 123, 3194.
2. (a) Flatt, B.; Martin, R.; Wang, T.-L.; Mahaney, P.; Murphy, B.; Gu, X.-H.; Foster,
P.; Li, J.; Pircher, P.; Petrowski, M.; Schulman, I.; Westin, S.; Wrobel, J.; Yan, G.;
Bischoff, E.; Daige, C.; Mohan, R. J. Med. Chem. 2009, 52, 904; (b) Lundquist, J. T.,
IV; Harnish, D. C.; Kim, C. Y.; Mehlmann, J. F.; Unwalla, R. J.; Phipps, K. M.;
Crawley, M. L.; Commons, T.; Green, D. M.; Xu, W.; Hum, W.-T.; Eta, J. E.;
Feingold, I.; Patel, V.; Evans, M. J.; Lai, K.; Borges-Marcucci, L.; Mahaney, P. E.;
Wrobel, J. E. Bioorg. Med. Chem. Lett. 2010, 53, 1774.
3. Wu, W.-L.; Burnett, D. A.; Spring, R.; Greenlee, W. J.; Smith, M.; Favreau, L.;
Fawzi, A.; Zhang, H.; Lachowicz, J. E. J. Med. Chem. 2005, 48, 680.
4. (a) Hajer, A.; Bastien, N. Nat. Prod. Rep. 2012, 29, 845; (b) Li, W. Z.; Duo, W.;
Zhuang, C. Org. Lett. 2011, 13, 3538; (c) Hiroshi, M.; Yuta, N.; Takahiro, H.;
Wiwied, E.; Aty, W.; Kanami, M.; Setsuko, S.; Yusuke, H. Heterocycles 2010, 81,
441.
5. (a) Yu, D.; Hui-Ying, H.; Hui, L.; Yuan-Ping, R.; Pei-Qiang, H. Synlett 2011, 565;
(b) Kuan-Hon, L.; Osamu, H.; Kanki, K.; Takashi, K.; Masahiko, H.; Toh-Seok, K. J.
Nat. Prod. 2007, 70, 1302; (c) Kuan-Hon, L.; Toh-Seok, K. Org. Lett. 2006, 8, 1733.
6. (a) Bandini, M.; Tragni, M.; Umani-Ronchi, A. Adv. Synth. Catal. 2009, 351, 2521;
(b) Clark, R. D.; Weinhardt, K. K.; Berger, W. J.; Fisher, L. E.; Brown, C. M.;
MacKinnon, A. C.; Kilpatrick, A. T.; Spedding, M. J. Med. Chem. 1990, 33, 633.
7. (a) Tietze, L. F.; Thede, K.; Sannicolò, F. Chem. Commun. 2000, 7, 583; (b) Tietze,
L. F.; Schimpf, R. Angew. Chem., Int. Ed. 1994, 33, 1089; (c) Stewart, S. G.; Heath,
C. H.; Ghisalberti, E. L. Eur. J. Org. Chem. 2009, 1934.
15. (a) Leonard, N. M.; Wieland, L. C.; Mohan, R. S. Tetrahedron 2002, 58, 8373; (b)
Briand, G. G.; Burford, N. Chem. Rev. 1999, 99, 2601; (c) Ge, R. G.; Sun, H. Z. Acc.
Chem. Res. 2007, 40, 267; (d) Yang, N.; Sun, H. Coord. Chem. Rev. 2007, 251,
2354; (e) Suzuki, H.; Matano, Y. Organobismuth Chemistry; Elsevier:
Amsterdam, 2001; (f) Varala, R.; Alam, M. M.; Adapa, S. R. Synlett 2003, 67;
(g) Le Roux, C.; Dubac, J. Synlett 2002, 181; (h) Loh, T.-P.; Chua, G.-L. Advances
in Organic Synthesis In Atta-ur-Rahman, Ed.; Bentham Science Publishers: The
Netherlands, 2005; p 173. and references therein.
16. It has been shown that organic reaction mixtures containing 4 Å molecular
sieves (Type 4A sodium aluminosilicates) are typically basic in nature, with
measured pH of slurry solutions in the pH 9–11 range. For more information,
see: (a) Davis, M. E. Ind. Eng. Chem. Res. 1991, 30, 1675 and references therein;
(b) Herr, R. J.; Meckler, H.; Scuderi, Jr., F. Org. Process Res. Dev. 2000, 4, 43; (c)
Sigma Aldrich Technical Information Bulletin AL-143: Mineral Adsorbents,
Filter Agents, and Drying Agents (Accessed 1/14/13).
17. General experimental procedure: Bi(OTf)3 (0.05 mmol) and 4 Å molecular sieves
(200 mg) were placed in a small screw-cap scintillation vial equipped with a
magnetic stir bar. Allylic halide (0.5 mmol) and dichloromethane (1 mL) were
added and the mixture was stirred at room temperature for 16 h. The mixture
was filtered through a pad of Celite, eluting with ethyl acetate, and the solvent
was removed under reduced pressure. The residue was purified by column
chromatography on silica gel to afford analytically pure cyclized product. See
Supplementary data for details concerning preparation of precursors.
18. So, M.;Kotake, T.; Matsuura, K.; Inui, M.;Kamimura, A. J. Org. Chem. 2012, 77, 4017.
19. Alternatively, the concept of Lewis acid-assisted Brønsted acid (LBA) may not
be entirely ruled out as a mechanism. See: (a) Kanno, O.; Kuriyama, W.; Wang,
Z. J.; Toste, F. D. Angew. Chem., Int. Ed. 2011, 50, 9919; (b) Yamamoto, H.;
Futatsugi, K. Angew. Chem., Int. Ed. 2005, 44, 1924; A mechanism proceeding via
proton transfer likewise cannot be discounted. See: (c) Rosenfeld, D. C.;
Shekhar, S.; Takemiya, A.; Utsunomiya, M.; Hartwig, J. F. Org. Lett. 2006, 8,
4179; (d) Lemière, G.; Cacciuttolo, B.; Belhassen, E.; Duñach, E. Org. Lett. 2012,
14, 2750.
8. Cid, M. M.; Dominguez, D.; Castedo, L.; Vazquez-Lopez, E. M. Tetrahedron 1999,
55, 5599.
9. Eckelbarger, J. D.; Wilmot, J. T.; Gin, D. Y. J. Am. Chem. Soc. 2006, 128, 10370.
10. (a) Wada, Y.; Kaga, H.; Uchiito, S.; Kumazawa, E.; Tomiki, M.; Onozaki, Y.;
Kurono, N.; Tokuda, M.; Ohkuma, T.; Orito, K. J. Org. Chem. 2007, 72, 7301; (b)
Wirt, U.; Schepmann, D.; Wünsch, B. Eur. J. Org. Chem. 2007, 462.
11. Noyori, R.; Hayakawa, Y. Org. React. 1983, 29, 163.
12. For a general review of Friedel–Crafts reactions, see: Olah, G. A.; Krishnamurti,
R.; Prakash, G. K. S. In Friedel–Crafts Alkylations in Comprehensive Organic
Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 3, p
293.