2216
T. Sifferlen et al. / Bioorg. Med. Chem. Lett. 23 (2013) 2212–2216
7. Brisbare-Roch, C.; Dingemanse, J.; Koberstein, R.; Hoever, P.; Aissaoui, H.;
Flores, S.; Mueller, C.; Nayler, O.; van Gerven, J.; de Haas, S. L.; Hess, P.; Qiu, C.;
Buchmann, S.; Scherz, M.; Weller, T.; Fischli, W.; Clozel, M.; Jenck, F. Nat. Med.
2007, 13, 150.
8. Koberstein, R.; Aissaoui, H.; Bur, D.; Clozel, M.; Fischli, W.; Jenck, F.; Mueller, C.;
Nayler, O.; Sifferlen, T.; Treiber, A.; Weller, T. Chimia 2003, 57, 270.
9. Sifferlen, T.; Boss, C.; Cottreel, E.; Koberstein, R.; Gude, M.; Aissaoui, H.; Weller,
T.; Gatfield, J.; Brisbare-Roch, C.; Jenck, F. Bioorg. Med. Chem. Lett. 2010, 20,
1539.
10. Previous structure–activity relationship studies in the tetrahydroisoquinoline
and pyrazolo-tetrahydropyridine series have indicated that two substituents
are mandatory for the aryl or heterocycle moiety in order to reach potent
affinities with both orexin receptors. Imidazoles were considered as a valuable
heterocyclic replacement for the dimethoxyphenyl moiety due to the fact that
they can be conveniently disubstituted, and the versatile chemistry of
imidazoles allows the introduction of diverse substituents having different
electronic properties.
11. 2-Substituted imidazoles 1 used for the investigations are either commercially
available or specifically synthesized (Scheme 3). Substituents R corresponding
to these 2-substituted imidazoles 1 are listed in Table 2.
12. Wittenberger, S. J.; Tasker, A.; Sorensen, B. K.; Donner, B. G. Synth. Commun.
1993, 23, 3231.
13. For recent reviews on halogen/magnesium exchange: (a) Abarbri, M.;
Thibonnet, J.; Berillon, L.; Dehmel, F.; Rottlaender, M.; Knochel, P. J. Org.
Chem. 2000, 65, 4618; (b) Knochel, P.; Dohle, W.; Gommermann, N.; Kneisel, F.
F.; Kopp, F.; Korn, T.; Sapountzis, I.; Vu, V. A. Angew. Chem., Int. Ed. 2003, 42,
4302.
14. Polyhalogenated imidazoles undergo halogen/magnesium or halogen/lithium
exchange in a specific sequence (C2 > C5 > C4), under the appropriate reaction
conditions: (a) Iddon, B.; Lim, B. L. J. Chem. Soc., Perkin Trans. 1 1983, 4, 735; (b)
Groziak, M. P.; Wei, L. J. Org. Chem. 1991, 56, 4296; (c) Carver, D. S.; Lindell, S.
D.; Saville-Stones, E. A. Tetrahedron 1997, 53, 14481; (d) Butz, R. H.-J.; Lindell, S.
D. J. Org. Chem. 2002, 67, 2699; (e) Lovely, C. J.; Du, H.; Dias, H. V. R. Heterocycles
2003, 60, 1.
Previous investigations of the corresponding tetrahydroisoquino-
line and pyrazolo-tetrahydropyridine series have outlinedthat brain
penetration can be substantially influenced by the substitution of
the phenethyl motif and further evaluation of this moiety was envis-
aged for 5,6,7,8-tetrahydroimidazo[1,5-a]-pyrazines.
In summary, we have described the synthesis and the identifi-
cation of a novel series of dual orexin receptor antagonists based
on the heterocyclic replacement of the dimethoxyphenyl moiety,
present in the tetrahydroisoquinoline series, by a disubstituted
imidazole. Investigations of the imidazole allowed to discover
appropriate substituents affording potent dual orexin receptor
antagonists 18 and 41 with low nanomolar potency for hOX1R
and hOX2R. Efforts to further optimize potency and mainly brain
penetration by fine-tuning of the pivotal phenethyl motif, and
the sleep-promoting activity of leading 5,6,7,8-tetrahydroimi-
dazo[1,5-a]-pyrazines with a rat EEG model will be disclosed in
due course.
Acknowledgments
The authors would like to thank Katalin Menyhart, Celia Müller
and Ronny Haenner for expert technical support and Professor
Henri Ramuz for continuous stimulating discussions.
References and notes
1. de Lecea, L.; Kilduff, T. S.; Peyron, C.; Gao, X.; Foye, P. E.; Danielson, P. E.;
Fukuhara, C.; Battenberg, E. L.; Gautvik, V. T.; Bartlett, F. S., II; Frankel, W. N.;
van den Pol, A. N.; Bloom, F. E.; Gautvik, K. M.; Sutcliffe, J. G. Proc. Natl. Acad. Sci.
U.S.A. 1998, 95, 322.
2. Sakurai, T.; Amemiya, A.; Ishii, M.; Matsuzaki, I.; Chemelli, R. M.; Tanaka, H.;
Williams, S. C.; Richardson, J. A.; Kozlowski, G. P.; Wilson, S.; Arch, J.;
Buckingham, R. E.; Haynes, A. C.; Carr, S. A.; Annan, R. S.; McNulty, D. E.; Liu,
W.; Terrett, J. A.; Elshourbagy, N. A.; Bergsma, D. J.; Yanagisawa, M. Cell 1998,
92, 573.
15. For recent reviews on Pictet–Spengler reaction: (a) Pulka, K. Curr. Opin. Drug
Discov. Dev. 2010, 13, 669; (b) Stockigt, J.; Antonchick, A. P.; Wu, F.-R.;
Waldmann, H. Angew. Chem., Int. Ed. 2011, 50, 8538.
16. Chen, Q.-Y.; Wu, S.-W. J. Chem. Soc., Chem. Commun. 1989, 11, 705.
17. Wolter, M.; Nordmann, G.; Job, G. E.; Buchwald, S. L. Org. Lett. 2002, 4, 973.
18. Lovely, C. J.; Du, H.; Dias, H. V. R. Org. Lett. 2001, 3, 1319.
19. Cachoux, F.; Isarno, T.; Wartmann, M.; Altmann, K.-H. Synlett 2006, 1384.
20. FLIPR assay: Chinese hamster ovary (CHO) cells expressing the human orexin
receptors (hOX1R or hOX2R) were seeded into 96-well plates and incubated at
37 °C in 5% CO2 with the cytoplasmic fluorescent calcium indicator fluo-3 AM
(Molecular Probes). After washing the cells, Ca2+ mobilization assays were
performed by FLIPR (Molecular Devices): Differing concentrations of orexin
receptor antagonists were added to the plates prior to addition of an
approximate EC80 of orexin A. For each antagonist, the IC50 (the
concentration of compound needed to inhibit 50% of the orexin A-induced
calcium response) was calculated.
3. Lin, L.; Faraco, J.; Li, R.; Kadotani, H.; Rogers, W.; Lin, X.; Qiu, X.; de Jong, P. J.;
Nishino, S.; Mignot, E. Cell 1999, 98, 365.
4. Chemelli, R. M.; Willie, J. T.; Sinton, C. M.; Elmquist, J. K.; Scammell, T.; Lee, C.;
Richardson, J. A.; Williams, S. C.; Xiong, Y.; Kisanuki, Y.; Fitch, T. E.; Nakazato,
M.; Hammer, R. E.; Saper, C. B.; Yanagisawa, M. Cell 1999, 98, 437.
5. For recent reviews on the medicinal chemistry of orexin antagonists: (a)
Roecker, A. J.; Coleman, P. J. Curr. Top. Med. Chem. 2008, 8, 977; (b) Boss, C.;
Brisbare-Roch, C.; Jenck, F.; Aissaoui, H.; Koberstein, R.; Sifferlen, T.; Weller, T.
Chimia 2008, 62, 974; (c) Boss, C.; Brisbare-Roch, C.; Jenck, F. J. Med. Chem. 2009,
52, 891; (d) Gatfield, J.; Brisbare-Roch, C.; Jenck, F.; Boss, C. ChemMedChem
2010, 5, 1197; (e) Coleman, P. J.; Renger, J. J. Expert Opin. Ther. Pat. 2010, 20,
307; (f) Coleman, P. J.; Cox, C. D.; Roecker, A. J. Curr. Top. Med. Chem. 2011, 11,
696; (g) Christopher, J. A. Pharm. Pat. Analyst 2012, 1, 329.
21. (a) Frutos, R. P.; Gallou, I.; Reeves, D.; Xu, Y.; Krishnamurthy, D.; Senanayake, C.
H. Tetrahedron Lett. 2005, 46, 8369; (b) Frutos, R. P.; Rodriguez, S.; Patel, N.;
Johnson, J.; Saha, A.; Krishnamurthy, D.; Senanayake, C. H. Org. Process Res. Dev.
2007, 11, 1076.
22. Kirk, K. L. J. Org. Chem. 1978, 43, 4381.
6. For the purposes of this communication, a dual orexin receptor antagonist
(DORA) is defined as having less than 20-fold selectivity for either OX1R or
OX2R.