Azobenzene LCs with High Birefringence
105
[4-(4-Pentyl-phenylbiethynyl)-phenyl]-(4-trifluoromethyl-phenyl)-diazene (3). Yel-
1
low solid, yield: 52.6%, 2.34 g. H-NMR (400 MHz, CDCl3) (δ, ppm): δ = 0.88 (t,
3H), 1.31 (m, 4H), 1.61 (m, 2H), 2.61 (t, 2H), 7.17 (d, 2H, J = 7.2 Hz), 7.45 (d, 2H, J =
7.2 Hz), 7.67 (d, 2H, J = 7.2 Hz), 7.78 (d, 2H, J = 7.6 Hz), 7.92 (d, 2H, J = 7.6 Hz), 7.98
(d, 2H, J = 7.6 Hz). IR (cm−1): 3026, 2960, 2861, 2212, 1919, 1594, 1598, 1467, 1320,
1269, 1097, 1021, 862, 804.
[4-(4ꢀ-Pentyl-biphenylethynyl)-phenyl]-(4-trifluoromethyl-phenyl)-diazene (4). Yel-
low solid, yield: 54.6%, 2.71 g. 1H-NMR (400 MHz, CDCl3) (δ, ppm): δ = 0.89 (t, 3H),
1.34 (m, 4H), 1.64 (m, 2H), 2.63 (t, 2H), 7.20 (d, 2H, J = 6.4 Hz), 7.49 (d, 2H, J = 6.4 Hz),
7.56 (d, 2H, J = 6.8 Hz), 7.59 (d, 2H, J = 6.4 Hz), 7.69 (d, 2H, J = 6.8 Hz), 7.77 (d, 2H,
J = 6.4 Hz), 7.93 (d, 2H, J = 6.8 Hz), 7.99 (d, 2H, J = 6.8 Hz). IR (cm−1): 3027, 2957,
2848, 2250, 1940, 1575, 1505, 1480, 1333, 1161, 1136, 1072, 1008, 856, 820.
5. Conclusions
A series of azobenzene LCs were designed and synthesized as potential new mesogens
having large birefringence values, and the effect of these replaced modifications on LC
properties was obtained. The shorter alkyl chain and the π-electron conjugation strength,
which were contributed to increased melting point or clearing point and to widen the
mesophase, were confirmed to have higher ꢀn values. The study on selective reflection
behavior of the compounds proved that the higher ꢀn had the more broad reflection band
of the N∗-LC and the trans-cis isomerization produced important influence on the selective
reflection behavior according to ꢀn change on the isomerization.
Acknowledgments
This work was supported by National Natural Science Foundation (Grant No. 50973010);
Specialized Research Fund for Doctoral Program of Higher Education of China (Grant
No. 20110006120002); and Scholastic Science Research Foundation of Xijing University
(Grant No. XJ120230).
References
[1] Kreger, K., Wolfer, P., Audorff, H., Kador, L., Stutzmann, N. S., Smith, P., & Schmidt, H. W.
(2010). J. Am. Chem. Soc., 132, 509.
[2] Beharry, A. A., Sadovski, O., & Woolley, G. A. (2011). J. Am. Chem. Soc., 133, 19684.
[3] Sio, L. D., Vasdekis, A. E., Cuennet, J. G., Luca, A. D., Pane, A., & Psaltis, D. (2011). Opt.
Express., 19, 23532.
[4] Priimagi, A., Ogawa, K., Virkki, M., Mamiya, J., Kauranen, M., & Shishido, A. (2012). Adv.
Mater., 24, 6387.
[5] Emoto, A., Uchida, E., & Fukuda, T. (2012). Polymers, 4, 150.
[6] Lee, K. M., Smith, M. L., Koerner, H., Tabiryan, N., Vaia, R. A., Bunning, T. J., & White, T. J.
(2011). Adv. Funct. Mater., 21, 2913.
[7] Okano, K., Shido, A. S., & Ikeda, T. (2005). Mol. Cryst. Liq. Cryst., 441, 275.
[8] Han, D., Tong, X., Zhao, Y., Galstian, T., Zhao, Y. (2010). Macromolecules, 43, 3664.
[9] White, T. J., McConney, M. E., Bunning, T. J. (2010). J. Mater. Chem., 20, 9832.
[10] Urbas, A., Tondiglia, V., Natarajan, L., Sutherland, R., Yu, H., Li, J. H., & Bunning, T. (2004).
J. Am. Chem. Soc., 126, 13580.
[11] Tong, X., Wang, G., & Zhao, Y. (2006). J. Am. Chem. Soc., 128, 8746.
[12] Ishiguro, M., Sato, D., Shishido, A., & Ikeda, T. (2007). Langmuir., 23, 332.