ChemComm
Communication
co-funded by the Dutch Ministry of Economic Affairs, Agriculture
and Innovation. Co-funded by ERC grant 204554 – SupraChemBio
(LB) and ERC grant 259183 – Sumoman (PJ). We thank Dr
S. Sahebali for help with statistical analysis, L. Olijve for help
with NMR measurement, J. van Dongen for high resolution
mass spectrometry measurements, S. Krabbenborg, MSc, for
the electrode surfaces and G. Kip for XPS measurements.
Notes and references
1 M. P. Lutolf and J. A. Hubbell, Nat. Biotechnol., 2005, 23, 47.
2 R. N. Shah, N. A. Shah, M. M. Del Rosario Lim, C. Hsieh, G. Nuber
and S. I. Stupp, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 3293.
3 Q. An, J. Brinkmann, S. Krabbenborg, J. de Boer and P. Jonkheijm,
Angew. Chem., Int. Ed., 2012, 51, 12233.
4 M. J. Webber, J. A. Kessler and S. I. Stupp, J. Intern. Med., 2010,
267, 71.
5 L. Yang, A. Gomez-Casado, J. F. Young, H. D. Nguyen, J. Cabanas-
´
Danes, J. Huskens, L. Brunsveld and P. Jonkheijm, J. Am. Chem. Soc.,
2012, 134, 19199.
6 D. A. Uhlenheuer, K. Petkau and L. Brunsveld, Chem. Soc. Rev., 2010,
39, 2817.
7 Y.-H. Gong, C. Li, J. Yang, H.-Y. Wang, R.-X. Zhuo and X.-Z. Zhang,
Macromolecules, 2011, 44, 7499.
8 R. E. Kieltyka, M. M. C. Bastings, G. C. van Almen, P. Besenius, E. W. L.
Kemps and P. Y. W. Dankers, Chem. Commun., 2012, 48, 1452.
9 D. Sobransingh and A. E. Kaifer, Chem. Commun., 2005, 5071.
10 E. Mason, X. Ling, R. Joseph, L. Kymeremeh-Mensah and X. Lu, RSC
Adv., 2012, 2, 1213.
11 R. V. Pinjari and S. P. Gejji, J. Phys. Chem., 2008, 112, 12679.
12 S. Liu, C. Ruspic, P. Mukhopadhyay, S. Chakrabarti, P. Y. Zavalij and
L. Isaacs, J. Am. Chem. Soc., 2005, 127, 15959.
13 Q. An, G. Li, C. Tao, Y. Li, Y. Wu and W. Zhang, Chem. Commun.,
2008, 1989.
Fig. 3 Scale bar: 200 mm. (a) hUVECs seeded on gold surfaces pre-incubated
with (i) CB[7] and 4, (ii) CB[7] and 5, (iii) only Au, (iv) CB[7], after 24 h proliferation.
All surfaces were blocked with EG6-SH as a last step. (b) Wound assay on a
confluent monolayer of hUVECs on CB[7] and 5. (c) hUVECs seeded on a gold
array functionalized with CB[7], Fc-RGD 5 and EG6–SH, after 4 h proliferation,
inset shows the magnified image.
14 A. Gomez Casado, P. Jonkheijm and J. Huskens, Langmuir, 2011,
27, 11508.
15 J. F. Young, H. D. Nguyen, L. Yang, J. Huskens, P. Jonkheijm and
L. Brunsveld, ChemBioChem, 2010, 11, 180.
16 K.-E. Gottschalk and H. Kessler, Angew. Chem., Int. Ed., 2002,
41, 3767.
17 U. Hersel, C. Dahmen and H. Kessler, Biomaterials, 2003, 24, 4385.
direction of cell growth by the supramolecularly immobilized
peptide epitopes (Fig. 3b).
To achieve patterned adhesion of hUVECs, glass substrates
patterned with gold arrays were used.3 Prior to the function-
alization of the gold arrays with CB[7], Fc-cRGD 5 and OEG6SH
as described above, the remaining glass areas were covalently 18 C. H. Yea, B. Lee, H. Kim, S. U. Kim, W. A. El-Said, J. Min, B. K. Oh
and J. W. Choi, Ultramicroscopy, 2008, 108, 1144.
19 S. P. Massia and J. A. Hubbell, J. Cell Biol., 1991, 114, 1089.
20 D. Coletti, F. A. Scaramuzzo, L. C. Montemiglio, A. Pristera,
blocked with polyethyleneglycol (ESI†). After seeding hUVECs
for 4 h on these arrays the bright field images show that cells
`
adhere specifically to the functionalized gold by having multiple
contact points and mostly spreading over multiple gold stripes
(Fig. 3c) whereas on the bare gold, the cells tended to align along
single gold stripes (ESI†).
In conclusion, the ferrocene–CB[7] based host–guest system
allows for supramolecular control of cell adhesion. The first
example of spatial resolution of supramolecular cell adhesion
using this system was demonstrated on a gold array. Combined
with investigations into different surface types27 and supra-
molecular approaches,3,28 such systems could lead to beneficial
switching properties, building further on contemporary covalent
methods29,30 by introducing reversibility and adaptability to
L. Teodori, S. Admano and M. Berteri, J. Biomed. Mater. Res.,
Part A, 2008, 91, 370.
21 S. D. Koster, J. Dittrich, G. Gasser, N. Husken, I. C. H. Castaneda,
J. L. Jios, C. O. D. Vedova and N. Metzler-Nolte, Organometallics,
2008, 27, 6326.
22 H. Eckert and C. Seidel, Angew. Chem., Int. Ed. Engl., 1986, 98, 168.
23 D. W. Lee, M. Park, M. Banerjee, S. H. Ha, T. Lee, K. Suh, S. Paul,
H. Jung, J. Kim, N. Selvapalam, S. H. Ryu and K. Kim, Nat. Chem.,
2011, 3, 154.
24 M. Meldal and C. W. Tornøe, Chem. Rev., 2008, 108, 2952.
25 G. J. Strijkers, E. Kluza, G. A. Van Tilborg, D. W. van der Schaft,
A. W. Griffioen, W. J. Mulder and K. Nicolay, Angiogenesis, 2010,
13, 161.
26 X. Dai, Z. Su and J. O. Liu, Tetrahedron Lett., 2000, 41, 6295.
27 I. Hwang, K. Baek, M. Jung, Y. Kim, K. M. Park, D.-W. Lee,
N. Selvapalam and K. Kim, J. Am. Chem. Soc., 2007, 129, 4170.
surface immobilization through the chemical fine-tuning of the 28 A. Gonzalez-Campo, M. Brasch, D. A. Uhlenheuer, A. Gomez-Casado,
L. Yang, L. Brunsveld, J. Huskens and P. Jonkheijm, Langmuir, 2012,
28, 16364.
29 J. T. Koepsel and W. L. Murphy, ChemBioChem, 2012, 13, 1717.
host–guest chemistry.
This research forms part of the Project P4.02 Superdices
of the research program of the BioMedical Materials institute, 30 I. Choi and W.-S. Yeo, ChemPhysChem, 2013, 14, 55.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 3679--3681 3681