2800
S. M. Lynch et al. / Bioorg. Med. Chem. Lett. 23 (2013) 2793–2800
N
References and notes
a, b
c
HN
R
R
N
R
1. O’Shea, J. J.; Pesu, M.; Borie, D. C.; Changelian, P. S. Nat. Rev. Drug Disc. 2004, 3,
555.
N
N
N
H
O
2. Macchi, P.; Villa, A.; Giliani, S.; Sacco, M. G.; Frattini, A.; Porta, F.; Ugazio, A. G.;
Johnston, J. A.; Candotti, F.; O’Shea, J. J.; Vezzoni, P.; Notarangelo, L. D. Nature
1995, 377, 65.
3. Russell, S. M.; Tayebi, N.; Nakajima, H.; Riedy, M. C.; Roberts, J. L.; Aman, M. J.;
Migone, T. S.; Noguchi, M.; Markert, M. L.; Buckley, R. H.; O’Shea, J. J.; Leonard,
W. J. Science 1995, 270, 797.
19
20
21
I
Bu3Sn
N
d
e
N
R
R
N
N
22
23
4. Ghoreschi, K.; Laurence, A.; O’Shea, J. J. Immunol. Rev. 2009, 228, 273.
5. Pesu, M.; Laurence, A.; Kishore, N.; Zwillich, S. H.; Chan, G.; O’Shea, J. J.
Immunol. Rev. 2008, 223, 132.
6. Flanagan, M. E.; Blumenkopf, T. A.; Brissette, W. H.; Brown, M. F.; Casavant, J.
M.; Chang, S.-P.; Doty, J. L.; Elliott, E. A.; Fisher, M. B.; Hines, M.; Kent, C.;
Kudlacz, E. M.; Lillie, B. M.; Magnuson, K. S.; McCurdy, S. P.; Munchhof, M. J.;
Perry, B. D.; Sawyer, P. S.; Strelevitz, T. J.; Subramanyam, C.; Sun, J.; Whipple, D.
A.; Changelian, P. S. J. Med. Chem. 2010, 53, 8468.
I
Bu3Sn
f
N
e
N
N
N
N
Cl
N
Cl
Cl
7. Riese, R. J.; Krishnaswami, S.; Kremer, J. Best Pract. Res. Clin. Rheumatol. 2010,
24, 513.
24
25
26
8. Kremer, J. M.; Bloom, B. J.; Breedveld, F. C.; Coombs, J. H.; Fletcher, M. P.;
Gruben, D.; Krishnaswami, S.; Burgos-Vargas, R.; Wilkinson, B.; Zerbini, C. A.;
Zwillich, S. H. Arthritis Rheum. 2009, 60, 1895.
9. West, K. Curr. Opin. Invest. Drugs 2009, 10, 491.
10. Incyte’s JAK inhibitor demonstrates rapid and marked clinical improvement in
rheumatoid arthritis patients. Incyte Corporation press release, October 26,
Scheme 3. Synthesis of imidazo[1,5]pyridinyl- and imidazo[1,2]pyridinyl stann-
anes. Reagents and conditions: (a) H2 (45 psi), Pd/C, concd HCl, EtOH, 3.5 h; (b)
HCO2H, 110 °C, overnight; (c) POCl3, toluene, 110 °C, 24–29% (3 steps); (d) I2,
NaHCO3, EtOH/H2O, rt, 27–38%; (e) i-PrMgCl, THF, ꢀ10 °C then Bu3SnCl, ꢀ10 °C to
rt, 83–90%; (f) n-BuLi, THF, ꢀ50 °C then N-iodosuccinimide, ꢀ50 to 0 °C.
2008.
11. Punwani, N.; Scherle, P.; Flores, R.; Shi, J.; Liang, J.; Yeleswaram, S.; Levy, R.;
Williams, W.; Gottlieb, A. J. Am. Acad. Dermatol. 2012, 67, 658.
12. Wilson, L. J. Expert Opin. Ther. Pat. 2010, 20, 609.
13. Wrobleski, S. T.; Pitts, W. J. Ann. Rep. Med. Chem. 2009, 44, 247.
14. Ghoreschi, K.; Laurence, A.; O’Shea, J. J. Nat. Immunol. 2009, 10, 356.
15. Lin, T. H.; Hegen, M.; Quadros, E.; Nickerson-Nutter, C. L.; Appell, K. C.; Cole, A.
G.; Shao, Y.; Tam, S.; Ohlmeyer, M.; Wang, B.; Goodwin, D. G.; Kimble, E. F.;
Quintero, J.; Gao, M.; Symanowicz, P.; Wrocklage, C.; Lussier, J.; Schelling, S. H.;
Hewet, A. G.; Xuan, D.; Krykbaev, R.; Togias, J.; Xu, X.; Harrison, R.; Mansour, T.;
Collins, M.; Clark, J. D.; Webb, M. L.; Seidl, K. J. Arthritis Rheum. 2010, 62(8),
2283.
bisamide 13. Substituted indazoles 14 were iodinated and selec-
tively methylated at N-1 under basic conditions (N1:N2 ratio
ꢁ3:1). Grignard exchange at low temperature followed by quench-
ing with tributyltin chloride provided the stannanes 16. Stille cou-
pling and a two-stage SEM deprotection afforded the target
molecules 6a–l.
Indole 5 was prepared as described in Scheme 2. Suzuki cou-
pling of bromide 17 and indole boronic ester 18 proceeded with
concomitant loss of the Boc protecting group. Selective N-methyl-
ation of the indole nitrogen followed by SEM deprotection afforded
5. The N1-linked indazole derivative 7 was prepared from bromide
17 using the copper catalyzed halide exchange/N-arylation se-
quence developed by Buchwald.30
Imidazo[1,5]pyridines were synthesized according to the route
illustrated in Scheme 3. Hydrogenation of 2-cyanopyridines 19 fol-
lowed by formylation in refluxing formic acid afforded the for-
mates 20. Treatment with phosphorous oxychloride followed by
heating induced cyclization to the appropriately substituted imi-
dazo[1,5]pyridines 21 in moderate yield for the three step se-
quence. Iodination followed by Grignard exchange and quenching
with tributyltin chloride provided the stannanes 23 required for
synthesis of 8 and 9 through Stille coupling and deprotection as de-
scribed above. Likewise, commercially available 7-chloroimi-
dazo[1,2]pyridine 24 was converted to 10 via the stannane 26.
In conclusion, using a structure based approach, we have dis-
covered a potent series of indazole-substituted pyrrolopyrazine
JAK3 inhibitors which show excellent pan-kinase and improved
JAK family selectivity at an enzyme level. We attribute our ob-
served selectivity to hydrophobic interactions with a cysteine res-
idue rare to the JAK3 binding pocket. Electronic repulsion was used
as a tool to induce conformational bias within the ligand which
favored the desired hydrophobic interaction and imparted the ob-
served improvement in kinase selectivity. This strategy was found
to be general in nature and was subsequently applied to additional
preclinical kinase inhibitor discovery programs.
16. Thoma, G.; Nuninger, F.; Falchetto, R.; Hermes, E.; Tavares, G. A.;
Vangrevelinghe, E.; Zerwes, H.-G. J. Med. Chem. 2011, 54, 284.
17. Haan, C.; Rolvering, C.; Raulf, F.; Kapp, M.; Druckes, P.; Thoma, G.; Behrmann, I.;
Zerwes, H.-G. Chem. Biol. 2011, 18, 314.
18. Soth, M.; Hermann, J.; Yee, C.; Alam, M.; Barnett, J. W.; Berry, P.; Browner, M. F.;
Harris, S.; Hu, D.-Q.; Jaime-Figueroa, S.; Jahangir, A.; Jin, S.; Frank, K.;
Frauchiger, S.; Hamilton, S.; He, Y.; Hendricks, T.; Hilgenkamp, R.; Ho, H.;
Kutach, A. K.; Hekmat-Nejad, M.; Henningsen, R.; Hoffman, A.; Hsu, J.; Itano, A.;
Kuglstatter, A.; Liao, C.; Lynch, S.; Menke, J.; Niu, L.; Patel, V.; Railkar, A.; Roy,
D.; Shao, A.; Shaw, D.; Steiner, S.; Sun, Y.; Tan, S.-L.; Wang, S.; Vu, M. D. J. Med.
Chem. 2013, 56, 345.
19. Boggon, T. J.; Li, Y.; Manley, P. W.; Eck, M. J. Blood 2005, 106, 996.
20. Wang, T.; Duffy, J. P.; Wang, J.; Halas, S.; Salituro, F. G.; Pierce, A. C.; Zuccola, H.
J.; Black, J. R.; Hogan, J. K.; Jepson, S.; Shlyakter, D.; Mahajan, S.; Gu, Y.; Hoock,
T.; Wood, M.; Furey, B. F.; Frantz, J. D.; Dauffenbach, L. M.; Germann, U. A.; Fan,
B.; Namchuk, M.; Bennani, Y. L.; Ledeboer, M. W. J. Med. Chem. 2009, 52, 7938.
21. Molecular Operating Environment (MOE), 2011.10; Chemical Computing Group
Inc., 1010 Sherbrooke St. West, Suite #910, Montreal, QC, Canada H3A 2R7,
2011.
22. Enzyme assay measured inhibition of phosphorylation of
synthetic peptide catalyzed by JAK1, JAK2 or JAK3. All enzymes reactions
were run at adenosine triphosphate (ATP) concentrations of 1.5 M. Km’s of
these enzymes for ATP were determined to be 1.5 M (JAK3), 6 M (JAK2), and
20 M (JAK1).
23. Martin, S. F. Pure Appl. Chem. 2007, 79, 193.
24. Jaguar, version 7.8, Schrödinger, LLC, New York, NY, 2011
a biotinylated
l
l
l
l
25. Michel, J.; Tirado-Rives, J.; Jorgensen, W. L. J. Am. Chem. Soc. 2009, 131, 15403.
26. X-ray crystal structure determined by Proteros Biostructures GmbH
(Martinsried, Germany).
27. Williams, N. K.; Bamert, R. S.; Patel, O.; Wang, C.; Walden, P. M.; Wilks, A. F.;
Fantino, E.; Rossjohn, J.; Lucet, I. S. J. Mol. Biol. 2009, 387, 219.
28. Dunne, J.; Reardon, H.; Trinh, V.; Li, E.; Farinas, J. Assay Drug Dev. Technol. 2004,
2, 121.
29. Fabian, M. A. B.; William, H.; Treiber, D. K.; Atteridge, C. E.; Azimioara, M. D.;
Benedetti, M. G.; Carter, T. A.; Ciceri, P.; Edeen, P. T.; Floyd, M.; Ford, J. M.;
Galvin, M.; Gerlach Jay, L.; Grotzfeld, R. M.; Herrgard, S.; Insko, D. E.; Insko, M.
A.; Lai, A. G.; Lelias, J.; Mehta, S. A.; Milanov, Z. V.; Velasco, A. M.; Wodicka, L.
M.; Patel, H. K.; Zarrinkar, P. P.; Lockhart, D. J. Nat. Biotechnol. 2005, 23, 329.
30. Antilla, J. C.; Baskin, J. M.; Barder, T. E.; Buchwald, S. L. J. Org. Chem. 2004, 69,
5578.
Acknowledgment
The authors wish to thank David Goldstein for his support of
this work.