Communication
ChemComm
7 (a) H. Lv, W.-Q. Jia, L.-H. Sun and S. Ye, Angew. Chem., Int. Ed., 2013,
52, 8607; (b) J. Izquierdo, A. Orue and K. A. Scheidt, J. Am. Chem.
Soc., 2013, 135, 10634.
8 Y. Wang, M.-S. Tu, F. Shi and S.-J. Tu, Adv. Synth. Catal., 2014,
356, 2009.
During this cascade, the synthetic power of a-ketoamides is fully
exploited as three complementary reactive sites are involved,
triggering an unprecedented thermodynamically driven formal
[4+3] heterocyclization. Three chemical bonds (C–C, C–N and
C–O) are assembled concomitantly and up to four stereogenic
centers are created with very high stereoselectivity. Moreover this
domino sequence represents a rare example of an organo-
catalyzed access to seven-membered ring systems in optically
active forms and the first example in the azepanes series. These
bicyclic molecules are then easily converted to synthetically
valuable azepanone, azepanol or azepanedione derivatives by
selective reduction or dehydration providing a complementary
answer to the challenging synthesis of optically active seven-
membered cyclic nitrogen-containing compounds.
´
´
9 (a) A. Michaut, S. Miranda-Garcıa, J. C. Menendez, Y. Coquerel and
´
J. Rodriguez, Eur. J. Org. Chem., 2008, 4988; (b) F. Lopez and
˜
J. L. Mascarenas, Chem. – Eur. J., 2007, 13, 2172; (c) H. Faustino,
˜
´
I. Alonso, J. L. Mascarenas and F. Lopez, Angew. Chem., Int. Ed.,
2013, 52, 6526.
10 For the use of a-ketoamides in organocatalyzed transformations,
see: (a) M. M. Sanchez Duque, S. Goudedranche, A. Quintard,
T. Constantieux, X. Bugaut, D. Bonne and J. Rodriguez, Synthesis,
2013, 1659; (b) C. Joie, K. Deckers and D. Enders, Synthesis, 2014,
799; (c) C. Joie, K. Deckers, G. Raabe and D. Enders, Synthesis,
2014, 1539.
11 For examples of organocatalyzed Michael–hemiaminalization reac-
´
tions, see: (a) R. Rios, I. Ibrahem, J. Vesely, H. Sunden and
´
A. Cordova, Tetrahedron Lett., 2007, 48, 8695; (b) W. Zhanga and
The Agence Nationale pour la Recherche (ANR-11-BS07-
´
J. Franzen, Adv. Synth. Catal., 2010, 352, 499; (c) G. Valero,
J. Schimer, I. Cisarova, J. Vesely, A. Moyano and R. Rios, Tetrahedron
Lett., 2009, 50, 1943; (d) X. Wu, Q. Liu, H. Fang, J. Chen, W. Cao and
G. Zhao, Chem. – Eur. J., 2012, 18, 12196.
´ ´
´
0014), the Direction Generale de l’Armement (DGA), the Region
PACA, the Centre National de la Recherche Scientifique (CNRS)
and the Aix-Marseille Universite are gratefully acknowledged
for financial support. We also thank Dr N. Vanthuyne and M.
Jean (ee measurements), and Dr M. Giorgi (X-ray diffraction
analysis).
´
12 D. Bonne, T. Constantieux, Y. Coquerel and J. Rodriguez, Chem. –
Eur. J., 2013, 19, 2218.
¨
13 (a) C. Schopf and K. Koch, Justus Liebigs Ann. Chem., 1942, 552, 37;
(b) G. Habermehl, Chem. Ber., 1966, 99, 1439; (c) J. W. Daly,
T. F. Spande and H. M. Garraffo, J. Nat. Prod., 2005, 68, 1556;
(d) For a recent review on other dihereobicyclo[3.2.1]octanes, see:
´
M. F. Flores and D. Dıez, Synlett, 2014, 1643.
Notes and references
14 (a) A. Padwa, L. Precedo and M. A. Semones, J. Org. Chem., 1999,
64, 4079; (b) L. Ollero, L. Castedo and D. Dominguez, Tetrahedron,
1999, 55, 4445.
15 X.-D. Wu, L. Wang, J. He, X.-Y. Li, L.-B. Dong, X. Gong, X. Gao,
L.-D. Song, Y. Li, L.-Y. Peng and Q.-S. Zhao, Helv. Chim. Acta, 2013,
96, 2207.
16 (a) K. L. Jensen, G. Dickmeiss, H. Jiang, Ł. Albrecht and
K. A. Jørgensen, Acc. Chem. Res., 2012, 45, 248–264; (b) S. Meninno
and A. Lattanzi, Chem. Commun., 2013, 49, 3821.
1 For reviews on enantioselective organocascades, see: (a) C. M. R. Volla,
L. Atodiresei and M. Rueping, Chem. Rev., 2014, 114, 2390; (b) D. Enders,
C. Grondal and M. R. M. Hu¨ttl, Angew. Chem., Int. Ed., 2007, 46,
1570; (c) C. Palomo and A. Mielgo, Angew. Chem., Int. Ed., 2006,
45, 7876; (d) A.-N. Alba, X. Companyo, M. Viciano and R. Rios, Curr.
Org. Chem., 2009, 13, 1432; (e) C. Grondal, M. Jeanty and D. Enders, Nat.
Chem., 2010, 2, 167.
2 For a recent review, see: (a) M.-Y. Han, J.-Y. Jia and W. Wang,
Tetrahedron Lett., 2014, 55, 784. For recent examples, see: (b) X. Dou,
F. Zhong and Y. Lu, Chem. – Eur. J., 2012, 18, 13945; (c) K. E. Ozboya
and T. Rovis, Chem. Sci., 2011, 2, 1835; (d) D. Enders, C. Wang and
J. W. Bats, Angew. Chem., Int. Ed., 2008, 47, 7539; (e) H. Li, L. Zu,
H. Xie, J. Wang and W. Wang, Chem. Commun., 2008, 5636.
3 For a recent review, see: (a) S. Goudedranche, W. Raimondi,
X. Bugaut, T. Constantieux, D. Bonne and J. Rodriguez, Synthesis,
2013, 1909. For recent examples, see: (b) Z. Jin, R. Yang, Y. Du,
B. Tiwari, R. Ganguly and Y. R. Chi, Org. Lett., 2012, 14, 3226;
(c) L. Huo, A. Ma, Y. Zhang and D. Ma, Adv. Synth. Catal., 2012, 354, 991;
(d) H. Li, J. Zhao, L. Zeng and W. Hu, J. Org. Chem., 2011, 76, 8064;
(e) B. Wanner, J. Mahatthananchai and J. F. Bode, Org. Lett., 2011,
13, 5378; ( f ) J. Jiang, J. Yu, X.-X. Sun, Q.-Q. Rao and L.-Z. Gong, Angew.
Chem., Int. Ed., 2008, 47, 2458; (g) N. Li, X.-H. Chen, J. Song, S.-W.
Luo, W. Fan and L.-Z. Gong, J. Am. Chem. Soc., 2009, 131, 15309.
4 For recent domino synthesis of seven-membered heterocycles in the
racemic series, see: (a) J. Zhou and Y.-Y. Yeung, Org. Lett., 2014,
16, 2134; (b) J.-M. Yang, C.-Z. Zhu, X.-Y. Tang and M. Shi, Angew.
Chem., Int. Ed., 2014, 53, 5142; (c) I. Nakamura, Y. Kudo and
M. Terada, Angew. Chem., Int. Ed., 2013, 52, 7536; (d) Y. A. Cheng,
T. Chen, C. K. Tan, J. J. Heng and Y.-Y. Yeung, J. Am. Chem. Soc.,
2012, 134, 16492; (e) S. Li and J. Wu, Chem. Commun., 2012, 48, 8973.
5 For reviews on general approaches to synthesize seven-membered
heterocycles, see: (a) P. A. Evans and B. Holmes, Tetrahedron, 1991,
47, 9131; (b) G. Rousseau and F. Homsi, Chem. Soc. Rev., 1997,
26, 453.
17 Below this temperature of ꢀ7 1C, the reaction medium tends to
freeze.
18 For complete reaction optimization, see the ESI†.
19 As already observed in previous studies from our group, N-alkyl
substituted 1,2-ketoamides are unproductive in this transformation,
´
see: O. Basle, W. Raimondi, M. M. Sanchez Duque, D. Bonne,
T. Constantieux and J. Rodriguez, Org. Lett., 2010, 12, 5246.
20 CCDC 1015393.
21 Y. Xu, S. Matsunaga and M. Shibasaki, Org. Lett., 2010, 12, 3246.
22 P. Kulanthaivel, Y. F. Hallock, C. Boros, S. M. Hamilton,
W. P. Janzen, L. M. Ballas, C. R. Loomis, J. B. Jiang and B. Katz,
J. Am. Chem. Soc., 1993, 115, 6452.
23 (a) Y.-F. Song, Y. Qu, X.-P. Cao and W. Zhang, Mar. Biotechnol., 2011,
13, 868; (b) E. Torres-Marquez, J. Sinnett-Smith, S. Guha, R. Kui,
R. T. Waldron, O. Rey and E. Rozengurt, Biochem. Biophys. Res.
Commun., 2010, 391, 63; (c) J. Hu and M. J. Miller, Tetrahedron Lett.,
1995, 36, 6379.
24 D. M. Floyd, S. D. Kimball, J. Krapcho, J. Das, C. F. Turk, R. V.
Moquin, M. W. Lago, K. J. Duff, V. G. Lee, R. E. White, R. E.
Ridgewell, S. Moreland, R. J. Brittain, D. E. Normandin, S. A. Hedberg
and G. G. Cucinotta, J. Med. Chem., 1992, 35, 756.
25 (a) J. C. Martin and R. J. Arhart, J. Am. Chem. Soc., 1971, 93, 4327;
(b) R. J. Arhart and J. C. Martin, J. Am. Chem. Soc., 1972, 94, 5003;
(c) J. C. Martin, R. J. Arhart, R. Franz, E. Perozzi and L. Kaplan, Org.
Synth., 1997, 57, 22.
26 A. C. Breman, J. Dijkink, J. H. van Maarseveen, S. S. Kinderman and
H. Hiemstra, J. Org. Chem., 2009, 74, 6327.
6 G. Illuminati and L. Mandolini, Acc. Chem. Res., 1981, 14, 95.
15608 | Chem. Commun., 2014, 50, 15605--15608
This journal is ©The Royal Society of Chemistry 2014