10.1002/anie.201915618
Angewandte Chemie International Edition
COMMUNICATION
To confirm the intact deposition of DiMeCAAC and to obtain more
chemical information about the species on the surface, GC-MS
measurements of DiMeCAAC • CO2 and XPS measurements of
DiMeCAAC on Au(111) were performed. A requirement for GC-
MS analysis is the intact evaporation of the molecule. At inlet
temperatures of more then 200 °C the molecule will
decarboxylate as expected and releases the free CAAC, which
resulted in a single peak with the mother ion peak at m/z = 285.30
(See SI). This is in agreement with the mass of the free CAAC
within the error of the quadrupole mass analyzer used. Since
DiMeCAAC only has one nitrogen atom we used N 1s XPS
analysis as a marker to investigate the intact nature of DiMeCAAC
on the surface. The resulting XPS spectrum is plotted in Figure
3.A. At 400.7 eV a clear single peak is observed as is expected
for the deposition of intact molecules. XPS literature for CAACs
bound to transition metals is not available. However, for NHCs
bound to Au(111) surfaces or nanoparticles typically N 1s binding
energies around 400 to 401 eV are reported.[3b,9d,9e,11] We
therefore conclude that the peak at 400.7 eV corresponds to
surface-bound CAAC molecules. Additionally the O 1s XPS
spectrum shows negligible traces of oxygen on the surface,
confirming the removal of CO2 during sample preparation.
Keywords: Au(111) surface • CAAC • Scanning Probe
Microscopy • Ligand • X-ray photoelectron spectroscopy
[1] a) M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature 2014, 510,
485–496; b) A. V. Zhukhovitskiy, M. J. MacLeod, J. A. Johnson, Chem.
Rev. 2015, 115, 11503–11532; c) C. A. Smith, M. R. Narouz, P. A.
Lummis, I. Singh, A. Nazemi, C.-H. Li, C. M. Crudden, Chem. Rev. 2019,
119, 4986–5056.
[2]
a) L. S. Ott, M. L. Cline, M. Deetlefs, K. R. Seddon, R. G. Finke, J. Am.
Chem. Soc. 2005, 127, 5758–5759; b) E. C. Hurst, K. Wilson, I. J. S.
Fairlamb, V. Chechik, New J. Chem. 2009, 33, 1837; c) J. Vignolle, T. D.
Tilley, ChemComm 2009, 7230–7232; d) K. V. S. Ranganath, J. Kloesges,
A. H. Schäfer, F. Glorius, Angew. Chem. Int. Ed. 2010, 49, 7786–7789;
e) E. A. Baquero, S. Tricard, J. C. Flores, E. de Jesús, B. Chaudret,
Angew. Chem. Int. Ed. 2014, 53, 13220–13224; f) M. J. MacLeod, J. A.
Johnson, J. Am. Chem. Soc. 2015, 137, 7974–7977; g) J. B. Ernst, S.
Muratsugu, F. Wang, M. Tada, F. Glorius, J. Am. Chem. Soc. 2016, 138,
10718–10721; h) C.-Y. Wu, W. J. Wolf, Y. Levartovsky, H. A. Bechtel, M.
C. Martin, F. D. Toste, E. Gross, Nature 2017, 541, 511–515; i) J. B. Ernst,
C. Schwermann, G.-I. Yokota, M. Tada, S. Muratsugu, N. L. Doltsinis, F.
Glorius, J. Am. Chem. Soc. 2017, 139, 9144–9147; j) R. W. Y. Man, C.-
H. Li, M. W. A. MacLean, O. V. Zenkina, M. T. Zamora, L. N. Saunders,
A. Rousina-Webb, M. Nambo, C. M. Crudden, J. Am. Chem. Soc. 2018,
140, 1576–1579; k) M. R. Narouz, K. M. Osten, P. J. Unsworth, R. W. Y.
Man, K. Salorinne, S. Takano, R. Tomihara, S. Kaappa, S. Malola, C.-T.
Dinh, J. D. Padmos, K. Ayoo, P. J. Garrett, M. Nambo, J. H. Horton, E. H.
Sargent, H. Häkkinen, T. Tsukuda, C. M. Crudden, Nat. Chem. 2019, 11,
419–425.
[3]
a) A. V. Zhukhovitskiy, M. G. Mavros, T. van Voorhis, J. A. Johnson, J.
Am. Chem. Soc. 2013, 135, 7418–7421; b) C. M. Crudden, J. H. Horton,
I. I. Ebralidze, O. V. Zenkina, A. B. McLean, B. Drevniok, Z. She, H.-B.
Kraatz, N. J. Mosey, T. Seki, E. C. Keske, J. D. Leake, A. Rousina-Webb,
G. Wu, Nat. Chem. 2014, 6, 409–414; c) A. Lv, M. Freitag, K. M. Chepiga,
A. H. Schäfer, F. Glorius, L. Chi, Angew. Chem. Int. Ed. 2018, 57, 4792–
4796; d) E. A. Doud, M. S. Inkpen, G. Lovat, E. Montes, D. W. Paley, M.
L. Steigerwald, H. Vázquez, L. Venkataraman, X. Roy, J. Am. Chem. Soc.
2018, 140, 8944–8949; e) R. Ye, A. V. Zhukhovitskiy, R. V. Kazantsev,
S. C. Fakra, B. B. Wickemeyer, F. D. Toste, G. A. Somorjai, J. Am. Chem.
Soc. 2018, 140, 4144–4149; f) D. T. Nguyen, M. Freitag, M. Körsgen, S.
Lamping, A. Rühling, A. H. Schäfer, M. H. Siekman, H. F. Arlinghaus, W.
G. van der Wiel, F. Glorius, B. J. Ravoo, Angew. Chem. Int. Ed. 2018, 57,
11465–11469.
Figure 3. A) N 1s XPS spectrum of a monolayer of DiMeCAAC
on Au(111) with a peak at 400.7 eV. The corresponding STM
image can be found in Fig.1.B. B) O 1s XPS spectrum of the same
sample showing a negligible trace of oxygen on the surface
confirming the removal of CO2 during sample preparation.
[4]
a) V. Lavallo, Y. Canac, C. Präsang, B. Donnadieu, G. Bertrand, Angew.
Chem. Int. Ed. 2005, 44, 5705–5709; b) M. Soleilhavoup, G. Bertrand,
Acc. 2015, 48, 256–266; c) M. Melaimi, R. Jazzar, M. Soleilhavoup, G.
Bertrand, Angew. Chem. Int. Ed. 2017, 56, 10046–10068.
M. P. Wiesenfeldt, Z. Nairoukh, W. Li, F. Glorius, Science 2017, 357,
908–912.
D. A. Ruiz, G. Ung, M. Melaimi, G. Bertrand, Angew. Chem. Int. Ed. 2013,
52, 7590–7592.
A. V. Zhukhovitskiy, M. G. Mavros, K. T. Queeney, T. Wu, T. van Voorhis,
J. A. Johnson, J. Am. Chem. Soc. 2016, 138, 8639–8652.
a) B. L. Tran, J. L. Fulton, J. C. Linehan, J. A. Lercher, R. M. Bullock, ACS
Catal. 2018, 8, 8441–8449; b) B. L. Tran, J. L. Fulton, J. C. Linehan, M.
Balasubramanian, J. A. Lercher, R. M. Bullock, ACS Catal. 2019, 9,
4106–4114.
a) G. Wang, A. Rühling, S. Amirjalayer, M. Knor, J. B. Ernst, C. Richter,
H.-J. Gao, A. Timmer, H.-Y. Gao, N. L. Doltsinis, F. Glorius, H. Fuchs,
Nat. Chem. 2017, 9, 152–156; b) C. R. Larrea, C. J. Baddeley, M. R.
Narouz, N. J. Mosey, J. H. Horton, C. M. Crudden, ChemPhysChem 2017,
18, 3536–3539; c) L. Jiang, B. Zhang, G. Medard, A. P. Seitsonen, F.
Haag, F. Allegretti, J. Reichert, B. Kuster, J. V. Barth, A. C. Papageorgiou,
Chem. Sci. 2017, 8, 8301–8308; d) A. Bakker, A. Timmer, E. Kolodzeiski,
M. Freitag, H. Y. Gao, H. Mönig, S. Amirjalayer, F. Glorius, H. Fuchs, J.
Am. Chem. Soc. 2018, 140, 11889–11892; e) G. Lovat, E. A. Doud, D.
Lu, G. Kladnik, M. S. Inkpen, M. L. Steigerwald, D. Cvetko, M. S.
Hybertsen, A. Morgante, X. Roy, L. Venkataraman, Chem. Sci. 2019, 10,
930–935.
[5]
[6]
[7]
[8]
In summary we showed the successful deposition of DiMeCAAC
on different transition metal surfaces via evaporation of the CO2
adduct in UHV. Molecular islands with short-range order were
found, however due to the unsymmetric nature and bulky side
group of the molecule a well-ordered, close-packed self-
assembled structure cannot be obtained. At lower coverage
prefered adsorption at the fcc phase of the herringbone
reconstruction was observed. Furthermore series of STM images
showed that DiMeCAAC is mobile on the surface, which can be
explained by the formation of ballbot-like species as observed
previously for other NHCs. Furthermore, the intact deposition of
DiMeCAAC was confirmed by a single peak in the N 1s XPS
spectrum and the removal of the CO2 groups has been confirmed
by the O 1s XPS spectrum. This investigation of a CAAC on
different surfaces opens the way for further studies on more
complex (chiral, functional) CAAC ligands.
[9]
[10] A. P. Singh, P. P. Samuel, H. W. Roesky, M. C. Schwarzer, G. Frenking,
N. S. Sidhu, B. Dittrich, J. Am. Chem. Soc. 2013, 135, 7324–7329.
[11] a) A. Rühling, K. Schaepe, L. Rakers, B. Vonhören, P. Tegeder, B. J.
Ravoo, F. Glorius, Angew. Chem. Int. Ed. 2016, 55, 5856–5860; b) M. R.
Narouz, C.-H. Li, A. Nazemi, C. M. Crudden, Langmuir 2017, 33, 14211–
14219; c) A. J. Young, M. Sauer, G. M. D. M. Rubio, A. Sato, A. Foelske,
C. J. Serpell, J. M. Chin, M. R. Reithofer, Nanoscale 2019, 11, 8327–
8333.
Acknowledgements
This work was generously supported by the Deutsche
Forschungsgemeinschaft through the collaborative research
center SFB 858 (project B03), and through projects AM 460/2-1,
MO 2345/4-1 and FU 299/19. Furthermore, we thank
nanoAnalytics GmbH for technical support.
3
This article is protected by copyright. All rights reserved.