J. Am. Chem. Soc. 1997, 119, 449-450
Scheme 1.a Preparation of Monosaccharide Units 2-4
449
A General and Highly Efficient Solid Phase
Synthesis of Oligosaccharides. Total Synthesis of a
Heptasaccharide Phytoalexin Elicitor (HPE)
K. C. Nicolaou,* Nicolas Winssinger, Joaqu´ın Pastor, and
Frederik DeRoose
Department of Chemistry and The Skaggs
Institute of Chemical Biology, The Scripps Research Institute
10550 North Torrey Pines Road
La Jolla, California 92037
Department of Chemistry and Biochemistry
UniVersity of California San Diego
9500 Gilman DriVe, La Jolla, California 92093
a Reagents and conditions: (a) MeSH (excess), SnCl4 (0.7 equiv),
CH2Cl2, -20 °C, 3 h, 85%; (b) i. PhSH (1.1 equiv), SnCl4 (0.7 equiv),
CH2Cl2, 0 °C, 4 h, 82%; ii. K2CO3 (0.3 equiv), THF/MeOH 1:1 (v/v),
25 °C, 15 h, 98%; (c) i. t-BuPh2SiCl (1.5 equiv), imidazole (2.0 equiv),
DMF, 25 °C, 3 h, 94%; ii. PhCOCl (4.0 equiv), Et3N (8.0 equiv),
4-DMAP (0.2 equiv), THF, 50 °C, 15 h, 92%; (d) PhCH(OMe)2 (2.0
equiv), CSA (0.5 equiv), benzene, reflux, 12 h, 96%; (e) t-BuMe2SiCl
(1.2 equiv), imidazole (1.5 equiv), DMF, 0 °C, 12 h, 88%; ii. PhCOCl
(1.5 equiv), Et3N (3 equiv), 4-DMAP (0.5 equiv), CH2Cl2, 15 h, 96%;
iii. BH3‚Me3N (40 equiv), AlCl3 (4 equiv), 4 Å MS, CH2Cl2/Et2O 5:2
(v/v), 0 °C, 5 h; iv. 2 N HCl in MeOH, 25 °C, 3 h, 85% (two steps);
(f) i. t-BuPh2SiCl (1.5 equiv), imidazole (2.0 equiv), DMF, 25 °C, 3 h,
96%; ii. Fmoc-Cl (3.0 equiv), pyridine, 25 °C, 1 h, 93%. 4-DMAP )
4-(dimethylamino)pyridine; CSA ) (()-10-camphorsulfonic acid;
Fmoc-Cl ) 9-fluorenylmethyl chloroformate.
ReceiVed October 4, 1996
Combinatorial chemistry imposes new demands on the solid
phase synthesis of organic molecules. Of particular interest to
glycobiology and medicine is versatile and practical methodol-
ogy for the construction of oligosaccharides of higher molecular
complexity and in a combinatorial fashion. Although several
methods for solid phase oligosaccharide synthesis have been
reported,1 new technologies that advance the field are still very
much in demand. In this paper, we describe new synthetic
technology for the construction of complex oligosaccharides on
a solid support and its application to the synthesis of the
heptasaccharide phytoalexin elicitor (HPE, 1).2,3 The described
chemistry combines (a) application of phenolic polystyrene in
solid phase oligosaccharide synthesis, (b) synthesis and utiliza-
tion of a new photolabile linker in solid phase synthesis; (c) a
number of versatile carbohydrate building blocks for potential
applications in combinatorial chemistry, and (d) the largest
branched oligosaccharide to be constructed on solid phase from
monosaccharide units and in reiterative fashion.
Scheme 2.a Synthesis of Polystyrene-Bound
Monosaccharides 13 and 15
For the purposes of the present technology, monosaccharide
building blocks 2-44 (Scheme 1) were designed to allow,
through neighboring group participation, selective â-glycoside
(1) For a review of solid phase oligosaccharide synthesis up to 1980,
see: (a) Fre´chet, J. M. J. Polymer-Supported Reactions in Organic Synthesis;
Wiley: New York, 1980, Chapter 8, p 407. For more recent advances in
solid phase synthesis of oligosaccharides, see: (b) Veeneman, G. H.;
Notermans, S.; Liskamp, R. M. J.; van der Marel, G. A.; van Boom, J. H.
Tetrahedron Lett. 1987, 28, 6695. (c) Danishefsky, S. J.; McClure, K. F.;
Randolph, J. T.; Ruggeri, R. B. Science 1993, 260, 1307. (d) Randolph, J.
T.; Danishefsky, S. J. Angew. Chem., Int. Ed. Engl. 1994, 33, 1470. (e)
Yan, L.; Taylor, C. M.; Goodnow, R., Jr.; Kahne, D. J. Am. Chem. Soc.
1994, 116, 6953. (f) Schulster, M.; Wang, P.; Paulson, J. C.; Wong C.-H.
J. Am. Chem. Soc. 1994, 116, 1135. (g) Randolph, J. T.; McClure, K. F.;
Danishefsky, S. J. J. Am. Chem. Soc. 1995, 117, 5712. (h) Rademann, J.;
Schmidt, R. R. Tetrahedron Lett. 1996, 23, 3989. Adinolfi, M.; Barone,
G.; De Napoli, L.; Iadonisi, A.; Piccialli, G. Tetrahedron Lett. 1996, 28,
5007. For oligosaccharide synthesis on soluble polymers, see: (i) Douglas,
S. P.; Whitfield, D. M.; Krepinsky, J. J. J. Am. Chem. Soc. 1991, 113,
5095. (j) Whitfield, D. M.; Douglas, S. P.; Krepinsky, J. J. Tetrahedron
Lett. 1992, 33, 6795. (k) Verduyn, R.; van der Klein, P. A. M.; Douwes,
M.; van der Marel, G. A.; van Boom, J. H. Recl. TraV. Chim. Pays-Bas
1993, 112, 464. (l) Douglas, S. P.; Whitfield, D. M.; Krepinsky, J. J. J.
Am. Chem. Soc. 1995, 117, 2116.
(2) For isolation and biological activity, see: (a) Sharp, J. K.; Valent,
B.; Albersheim, P. J. Biol. Chem. 1984, 259, 11312. Sharp, J. K.; Valent,
B.; Albersheim, P. J. Biol. Chem. 1984, 259, 11321. For a review in this
field, see: (b) Darvill, A.; Augur, C.; Bergmann, C.; Carlson, R. W.;
Cheong, J.-J.; Eberhard, S.; Hahn, M. G.; Lo´, V.-M.; Marfa`, V.; Meyer,
B.; Mohnen, D.; O’Niell, M. A.; Spiro, M. D.; van Halbeek, H.; York, W.
S.; Albersheim, P. Glycobiology 1992, 2, 181.
(3) For previous syntheses, see: (a) Ossowski, B. P.; Pilotti, Å.; Garegg,
P. J.; Lindberg, B. Angew. Chem., Int. Ed. Engl. 1983, 10, 793. (b) Ossowski,
B. P.; Pilotti, Å.; Garegg, P. J.; Lindberg, B. J. Biol. Chem. 1984, 259,
11337. (c) Fu¨gedi, P.; Birberg, W.; Garegg, P. J.; Pilotti, Å. Carbohydr.
Res. 1987, 164, 297. (d) Fu¨gedi, P.; Garegg, P. J.; Kvarnstro¨m, I.; Svansson,
L. Carbohydr. Chem. 1988, 7, 389. (e) Birberg, W.; Fu¨gedi, P.; Garegg, P.
J.; Pilotti, Å. J. Carbohydr. Res. 1989, 8, 47. (f) Lorentzen, J. P.; Helpap,
B.; Oswald, L. Angew. Chem., Int. Ed. Engl. 1991, 12, 1681. (g) Hong, N.;
Ogawa, T. Tetrahedron Lett. 1990, 31, 3179. (h) Verduyn, R.; van der Klein,
P. A. M.; Douwes, M.; van der Marel, G. A.; van Boom, J. H. Recl. TraV.
Chim. Pays-Bas 1993, 112, 464.
a Reagents and conditions: (a) i. n-BuLi (1.3 equiv), cyclohexane,
65 °C, 4 h; ii. O2, cyclohexane, 25 °C, 2 h; iii. PPh3 (2.0 equiv) THF,
25 °C, 12 h; (b) 12 (2.0 equiv), Cs2CO3 (2.0 equiv), DMF, 25 °C, 30
h, >90%; (c) 3 (1.0 equiv), 11 (1.5 equiv), DMTST (4.0 equiv), 4 Å
MS, CH2Cl2, 25 °C, 4 h, 95%; (d) 30% hydrogen fluoride‚pyridine,
THF, 25 °C, 15 h, >98%. DMTST ) (dimethylthio)methylsulfonium
triflate; TBDMS ) Si-t-BuMe2.
bond formations at positions C-1 (unit 2), C-6 (unit 3), and C-3
(unit 4). Their construction is summarized in Scheme 1.
Polystyrene (9, Scheme 2) was functionalized to phenolic
polystyrene (10) by the sequential action of n-BuLi, oxygen,
and PPh3.5,6 As a linker,7 a readily available o-nitrobenzyl ether
tether was utilized for its ease of attachment and cleavage. Thus,
commercially available 5-hydroxy-2-nitrobenzaldehyde was
reacted with 1,3-diiodopropane in the presence of Cs2CO3 in
(5) Fre´chet, J. M. J.; de Smet, M.; Farral, J. M. Polymer 1979, 20, 675.
(6) Although only p-substituted polystyrene is shown, it is estimated that
the phenolic polystyrene 10 contains both p- and m-hydroxyphenyl rings.
The functionalization was performed to the extent of 0.25-1.0 mmol/g,
and the subsequent chemistry was carried out using a 0.25 mmol/g phenolic
polystyrene.
(4) All new compounds exhibited satisfactory spectral and exact mass
data. Yields refer to spectroscopically and chromatographically homoge-
neous materials.
S0002-7863(96)03482-8 CCC: $14.00 © 1997 American Chemical Society