T. M. A. Al-Shboul, H. Görls, S. Krieck, M. Westerhausen
SHORT COMMUNICATION
was collected and washed with diethyl ether to obtain pure product
graphic data for this paper. These data can be obtained free of
2 (0.92 g, 1.62 mmol, 84%). C36H40O2P2 (566.65): calcd. C 76.31, H charge from The Cambridge Crystallographic Data Centre via
7.12; found C 76.23, H 7.08. 1H NMR (200 MHz, 298 K, CDCl3): δ
www.ccdc.cam.ac.uk/data_request/cif.
2
= 0.74 (s, 18 H, tBu), 3.25 (d, JHP = 9.8 Hz, 2 H), 7.25–7.88 (m,
aryl) ppm. 31P{1H} NMR (162 MHz, 298 K, CDCl3): δ = 32.6
Acknowledgments
(s) ppm. IR: ν = 1673 (w), 1640 (w), 1591 (w), 1396 (w), 1376 (m),
˜
1366 (m), 1340 (w), 1317 (w), 1239 (w), 1219 (w), 1188 (vs), 1160
(s), 1117 (s), 1102 (m), 1070 (m), 1038 (m), 1021 (w), 998 (w), 928
(w), 860 (w), 798 (w), 745 (m), 724 (s), 696 (vs), 584 (s), 542 (s),
530 (vs), 470 (w) cm–1. MS (DEI): m/z (%) = 566 (3) [M]+, 509 (20)
[M – tBu]+, 435 (33), 295 (17), 201 (100) [OPPh2]+, 77 (35) [Ph]+.
S. K. gratefully acknowledges the financial support of the Fonds
der Chemischen Industrie (VCI/FCI, Frankfurt a.M./Germany).
We also thank the German Research Foundation (DFG, Bonn/
Germany) for financial support.
General Procedure for the Synthesis of 1,4-Disubstituted 1,4-Bis(di-
phenylphosphoryl)buta-1,3-dienes (3): To a solution of the 1,4-di-
substituted 1,4-bis(diphenylphosphanyl)buta-1,3-diene (0.17 μmol)
dissolved in THF (8 mL) was added H2O2 (30%, 0.036 mL,
0.34 μmol) dropwise with a syringe at 0 °C. Then, the reaction mix-
ture was stirred for 1 h at room temperature. After reduction of the
volume to half of the original volume, methanol (4 mL) was added.
Within 6 d, colorless crystals of 3 were obtained at room tempera-
ture (approx. 90% yield).
[1] D. K. Wicht, D. S. Glueck in Catalytic Heterofunctionalization:
From Hydroamination to Hydrozirconation (Eds.: A. Togni, H.
Grützmacher), Wiley, Weinheim, 2001, ch. 5, pp. 143–170.
[2] R. A. Williams, T. P. Hanusa, J. C. Huffman, J. Am. Chem. Soc.
1990, 112, 2454–2455.
[3] M. Kaupp, Angew. Chem. 2001, 113, 3642–3677; Angew. Chem.
Int. Ed. 2001, 40, 3534–3565–3677.
[4] S. K. Ritter, Chem. Eng. News 2011, 89, 49–51.
[5] a) S. Harder, Chem. Rev. 2010, 110, 3852–3876; b) A. G. M.
Barrett, M. R. Crimmin, M. S. Hill, P. A. Procopiou, Proc. R.
Soc. London Ser. A 2010, 466, 927–963.
[6] a) M. Gärtner, H. Görls, M. Westerhausen, Z. Anorg. Allg.
Chem. 2007, 633, 2025–2031; b) M. R. Crimmin, A. G. M. Bar-
rett, M. S. Hill, P. B. Hitchcock, P. A. Procopiou, Inorg. Chem.
2007, 46, 10410–10415.
3a: M.p. 213–215 °C. MS (EI): m/z (%) = 482 (100) [M]+, 281 (40)
[M – OPPh2]+, 201 (60) [OPPh2]+. 1H NMR (200.13 MHz, CDCl3):
3
3
4
δ = 7.13 (AAЈXXЈ type, JAAЈ = 11.2 Hz, JAX = 18.8 Hz, JAXЈ
=
1.3 Hz, JXXЈ = 0 Hz, CH), 7.4–7.7 (phenyl) ppm. 13C{1H} NMR
(50.328 MHz, CDCl3): δ = 128.5 (8 C, JCP = 4.6 Hz), 128.9 (4 C,
JCP = 6.0 Hz), 129.5 (4 C), 14.1 (2 C), 132.1 (8 C, JCP = 22.4 Hz),
135.1 (2 C, JCP = 2.9 Hz), 136.9 (2 C) ppm. 31P NMR (81.01 MHz,
5
[7] J. Langer, T. M. A. Al-Shboul, F. M. Younis, H. Görls, M.
Westerhausen, Eur. J. Inorg. Chem. 2011, 3002–3007.
[8] a) T. M. A. Al-Shboul, H. Görls, M. Westerhausen, Inorg.
Chem. Commun. 2008, 11, 1419–1421; b) T. M. A. Al-Shboul,
V. K. Pálfi, L. Yu, R. Kretschmer, K. Wimmer, R. Fischer, H.
Görls, M. Reiher, M. Westerhausen, J. Organomet. Chem. 2011,
696, 216–227.
[9] M. R. Crimmin, A. G. M. Barrett, M. S. Hill, P. B. Hitchcock,
P. A. Procopiou, Organometallics 2008, 27, 497–499.
[10] M. R. Crimmin, A. G. M. Barrett, M. S. Hill, P. B. Hitchcock,
P. A. Procopiou, Organometallics 2007, 26, 2953–2956.
[11] H. Hu, C. Cui, Organometallics 2012, 31, 1208–1211.
[12] M. Westerhausen, S. Krieck, J. Langer, T. M. A. Al-Shboul, H.
Görls, Coord. Chem. Rev. 2012, DOI: 10.1016/j.ccr.2012.06.018.
[13] L. M. da Costa, J. W. de M. Carneiro, L. W. C. Paes, G. A. Ro-
meiro, THEOCHEM 2009, 911, 46–51.
[14] See, for example: a) N. M. Karayannis, C. M. Mikulski, M. J.
Strocko, L. L. Pytlewski, M. M. Labes, J. Inorg. Nucl. Chem.
1970, 32, 2629–2640; b) M. W. G. de Bolster, I. E. Kortram,
W. L. Groeneveld, J. Inorg. Nucl. Chem. 1972, 34, 575–580; c)
G. B. Jameson, G. A. Rodley, Inorg. Nucl. Chem. Lett. 1975,
11, 547–551; d) M. W. G. de Bolster, C. Boutkan, T. A.
van der Knaap, L. van Zweeden, I. E. Kortram, W. L. Groene-
veld, Z. Anorg. Allg. Chem. 1978, 443, 269–278; e) K. C. Jayar-
atne, L. S. Fitts, T. P. Hanusa, V. G. Young, Organometallics
2001, 20, 3638–3640; f) M. B. Hursthouse, W. Levason, R. Rat-
nani, G. Reid, H. Stainer, M. Webster, Polyhedron 2005, 24,
121–128; g) S. Midollini, P. Lorenzo-Luis, A. Orlandini, Inorg.
Chim. Acta 2006, 359, 3275–3282; h) M. F. Davis, W. Levason,
R. Ratnani, G. Reid, M. Webster, New J. Chem. 2006, 30, 782–
790; i) Z. S. Kozhomuratova, Y. V. Mironov, M. A. Shestopa-
lov, Y. M. Gaifulin, N. V. KuratЈeva, E. M. Uskov, V. E. Fedo-
rov, Russ. J. Coord. Chem. 2007, 33, 1–6; j) A. G. M. Barrett,
M. R. Crimmin, M. S. Hill, G. Kociok-Kohn, D. J. MacDou-
gall, M. F. Mahon, P. A. Procopiou, Organometallics 2008, 27,
3939–3946; k) M. S. Hill, M. F. Mahon, T. P. Robinson, Chem.
Commun. 2010, 46, 2498–2500.
CDCl ): δ = 36.2 ppm. IR (KBr): ν = 1626 (m), 1589 (m), 1573
˜
3
(w), 1461 (vs), 1440 (vs), 1378 (vs), 1312 (m), 1244 (w), 1169 (vs),
1118 (vs), 1093 (w), 1071 (m), 1026 (m), 996 (s), 966 (s), 907 (w),
861 (w), 752 (s), 723 (vs), 697 (vs), 662 (s), 621 (w), 590 (w), 545
(vs), 504 (w) cm–1. C30H28O2P2 (482.49): calcd. C 74.68, H 5.85;
found C 74.44, H 5.83.
3b: M.p. 276–279 °C. MS (EI): m/z (%) = 606 (1) [M]+, 405 (100)
[M – OPPh2]+, 201 (20) [OPPh2]+. 1H NMR (200.13 MHz, CDCl3):
3
3
4
δ = 6.73 (AAЈXXЈ type, JAAЈ = 10.9 Hz, JAX = 19.2 Hz, JAXЈ
=
1.1 Hz, JXXЈ = 0 Hz, CH), 7.2–7.5 (phenyl) ppm. 13C{1H} NMR
(50.328 MHz, CDCl3): δ = 128.0 (4 C), 128.3 (4 C), 128.4 (2 C),
129.5 (8 C, JCP = 20 Hz), 131.9 (8 C, JCP = 9.4 Hz), 134.1 (4 C,
JCP = 8.1 Hz), 137.8 (4 C), 138.2 (2 C, JCP = 14.3 Hz), 141.9 (2 C),
143.6 (2 C) ppm. 31P NMR (81.01 MHz, CDCl3): δ = 33.6 ppm.
5
IR (KBr): ν = 1968 (w), 1901 (w), 1825 (w), 1590 (m), 1574 (w),
˜
1552 (w), 1487 (s), 1437 (vs), 1311 (m), 1279 (w), 1192 (vs), 1117
(vs), 1100 (s), 1072 (m), 1029 (m), 998 (m), 935 (w), 900 (s), 851
(w), 768 (m), 752 (m), 724 (vs), 701 (vs), 631 (w), 617 (w), 603 (s),
584 (w), 566 (m), 548 (vs), 507 (s) cm–1. C40H32O2P2 (606.63): calcd.
C 79.20, H 5.32; found C 79.10, H 5.13.
3c: M.p. 182–185 °C. MS (EI): m/z (%) = 598 (1) [M]+, 397 (100)
[M – OPPh2]+, 201 (20) [OPPh2]+. 1H NMR (200.13 MHz, CDCl3):
3
3
4
δ = 7.03 (AAЈXXЈ type, JAAЈ = 11.4 Hz, JAX = 30.2 Hz, JAXЈ
=
1.1 Hz, JXXЈ = 0 Hz, CH), 7.4–7.7 (phenyl) ppm. 13C{1H} NMR
(50.328 MHz, CDCl3): δ = 128.7 (8 C, JCP = 12.3 Hz), 131.7 (8 C,
JCP = 7.3 Hz), 133.4 (4 C), 147.4 (4 C), 148.7 (2 C), 151.3 (2 C,
JCP = 29.7 Hz), 0.7 (2 C) ppm. 31P NMR (81.01 MHz, CDCl3): δ
5
= 40.8 ppm. IR (KBr): ν = 1963 (w), 1900 (w), 1821 (w), 1711 (w),
˜
1590 (m), 1483 (s), 1437 (vs), 1407 (w), 1309 (m), 1250 (vs), 1189
(vs), 1118 (vs), 1100 (s), 1070 (m), 1026 (m), 998 (m), 898 (s), 875
(m), 842 (vs), 746 (s), 722 (s), 696 (vs), 635 (s), 617 (w), 570 (s), 538
(vs) cm–1. C34H40O2P2Si2 (598.80): calcd. C 68.20, H 6.73; found C
67.24.10, H 6.59.
[15] T. M. A. Al-Shboul, G. Volland, H. Görls, S. Krieck, M. West-
erhausen, Inorg. Chem. 2012, 51, 7903–7912.
[16] The intensity data were collected with a Nonius KappaCCD
diffractometer by using graphite-monochromated Mo-Kα radi-
ation. Data were corrected for Lorentz and polarization effects,
CCDC-892427 (for 1), -892428 (for 2), -892429 (for 3a), -892430
(for 3b), and -892431 (for 3c) contain the supplementary crystallo-
5454
www.eurjic.org
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2012, 5451–5455