allyl carbonates (Scheme 1, path a).8 The reaction pro-
ceeded via a dearomatized spiro-indolenine intermediate,
featuring the switch of the substituent from the C3 to the
C2 position of the indole. Given the high reactivity of
the C3 position of indole, we envisaged, by utilizing the
2-indoyl allyl carbonate 1 as the substrate, the chiral
tetrahydrocarboline framework could also be easily ac-
cessed via the iridium-catalyzed intramolecular Friedelꢀ
Crafts type allylic alkylation reaction (Scheme 1, path b).
The two approaches utilized different starting materials
but led to identical products. Herein, we describe such a
highly enantioselective synthesis of substituted tetrahydro-
carbolines via Ir-catalyzed FriedelꢀCrafts type intramolecu-
lar asymmetric allylic alkylation of 2-indolyl allyl carbonates.
phosphoramidite ligand L1 (Table 1).9,10 To our great
delight, with either Cs2CO3 or K3PO4 as the base, the
reaction proceeded withexcellent chemoselectivity in favor
of the alkylation product, delivering the tetrahydrocarbo-
line 2a in excellent yields and enantioselectivity (82ꢀ86%
yields, 85% ee, entries 1ꢀ2, Table 1). Notably, the reaction
also occurred smoothly in 74% yield and 85% ee in the
absence of an additional base (entry 3, Table 1).
Table 1. Optimization of Reaction Conditionsa
Scheme 1. Different Approaches for the Synthesis of Chiral
Tetrahydrocarboline Frameworks
To begin the study, indoyl allyl carbonate 1a was taken
as the model substrate for optimizing the reaction condi-
tions. First, different bases were tested in the reaction with
an iridium-catalytic system derived from [Ir(cod)Cl]2 and
(7) Selected examples: (a) Bandini, M.; Melloni, A.; Piccinelli, F.;
Sinisi, R.; Tommasi, S.; Umani-Ronchi, A. J. Am. Chem. Soc. 2006, 128,
1424. (b) Cheung, H. Y.; Yu, W.-Y.; Lam, F. L.; Au-Yeung, T. T.-L.;
Zhou, Z.; Chan, T. H.; Chan, A. S. C. Org. Lett. 2007, 9, 4295. (c) Liu,
W.-B.; He, H.; Dai, L.-X.; You, S.-L. Org. Lett. 2008, 10, 1815. (d)
Hoshi, T.; Sasaki, K.; Sato, S.; Ishii, Y.; Suzuki, T.; Hagiwara, H. Org.
Lett. 2011, 13, 932. (e) Cao, Z.; Liu, Y.; Liu, Z.; Feng, X.; Zhuang, M.;
Du, H. Org. Lett. 2011, 13, 2164. (f) Suzuki, Y.; Nemoto, T.; Kakugawa,
K.; Hamajima, A.; Hamada, Y. Org. Lett. 2012, 14, 2350. (g) Xu, Q.-L.;
Dai, L.-X.; You, S.-L. Org. Lett. 2012, 14, 2579. (h) Schafroth, M. A.;
Sarlah, D.; Krautwald, S.; Carreira, E. M. J. Am. Chem. Soc. 2012, 134,
20276. (i) Xu, Q.-L.; Dai, L.-X.; You, S.-L. Chem. Sci. 2013, 4, 97. (j)
Mino, T.; Ishikawa, M.; Nishikawa, K.; Wakui, K.; Sakamoto, M.
Tetrahedron: Asymmetry 2013, 24, 499. (k) Du, L.; Cao, P.; Xing, J.;
Lou, Y.; Jiang, L.; Li, L.; Liao, J. Angew. Chem., Int. Ed. 2013, 52, 4207.
(8) Zhuo, C.-X.; Wu, Q.-F; Zhao, Q.; Xu, Q.-L.; You, S.-L. J. Am.
Chem. Soc. 2013, 135, 8169.
temp
t
conv
yield
ee
b
entry
L
solvent (°C) (h) (%)b 2a/2a0
(%)c (%)d
1
L1
L1
L1
L2
L3
L4
L5
L6
L7
L8
L9
THF
THF
THF
THF
THF
THF
THF
THF
THF
THF
THF
50
50
50
50
50
50
50
50
50
50
50
50
rt
3
3
5
2
21
2
2
2
2
2
2
2
>95
>95
85
50/1
20/1
82
86
74
58
ꢀ
85
85
85
ꢀ
2e
3f
>50/1
3.5/1
4
>95
57
5
50/1
ꢀ
6
>95
>95
>95
>95
>95
>95
>95
>50/1
>50/1
>50/1
>50/1
>50/1
>50/1
>50/1
>50/1
>50/1
>50/1
>50/1
>50/1
81
79
90
64
85
80
88
81
84
76
74
80
90
84
81
ꢀ83
80
92
85
96
96
98
99
>99
7
8
9
10
11
12
13
14e
15e
16e
17e
(9) For reviews: (a) Miyabe, H.; Takemoto, Y. Synlett 2005, 1641. (b)
Takeuchi, R.; Kezuka, S. Synthesis 2006, 3349. (c) Helmchen, G.;
L10 THF
L9
L9
L9
L9
L9
THF
2.5 >95
2.5 >95
2.5 >95
€
Dahnz, A.; Dubon, P.; Schelwies, M.; Weihofen, R. Chem. Commun.
THF
rt
2007, 675. (d) Helmchen, G. In Iridium Complexes in Organic Synthesis;
Oro, L. A., Claver, C., Eds.; Wiley-VCH: Weinheim, Germany, 2009; p 211.
(e) Hartwig, J. F.; Stanley, L. M. Acc. Chem. Res. 2010, 43, 1461. (f)
Hartwig, J. F.; Pouy, M. J. Top. Organomet. Chem. 2011, 34, 169. (g) Liu,
W.-B.; Xia, J.-B.; You, S.-L. Top. Organomet. Chem. 2012, 38, 155. (h)
Tosatti, P.; Nelson, A.; Marsden, S. P. Org. Biomol. Chem. 2012, 10,
3147.
toluene
Et2O
rt
rt
2
2
>95
>95
CH2Cl2
rt
a Reaction conditions: 2 mol % of [Ir(cod)Cl]2, 4 mol % of L,
0.2 mmol of 1a, and 100 mol % of Cs2CO3 in solvent (2 mL), unless noted
otherwise. b Determined by 1H NMR of the crude reaction mixture.
c Isolated yield of 2a. d Determined by HPLC analysis. e 100 mol % of
K3PO4 was used. f No base was used in the reaction.
(10) Selected recent examples: (a) Stanley, L. M.; Bai, C.; Ueda, M.;
€
Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 8918. (b) Gartner, M.;
Mader, S.; Seehafer, K.; Helmchen, G. J. Am. Chem. Soc. 2011, 133,
~
ꢀ
2072. (c) Teichert, J. F.; Fananas-Mastral, M.; Feringa, B. L. Angew.
Chem., Int. Ed. 2011, 50, 688. (d) Gao, N.; Zheng, S.; Yang, W.; Zhao, X.
Org. Lett. 2011, 13, 1514. (e) Tosatti, P.; Campbell, A. J.; House, D.;
Nelson, A.; Marsden, S. P. J. Org. Chem. 2011, 76, 5495. (f) Chen, W.;
Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 15249. (g) Roggen, M.;
Carreira, E. M. Angew. Chem., Int. Ed. 2012, 51, 8652. (h) Schafroth,
M. A.; Sarlah, D.; Krautwald, S.; Carreira, E. M. J. Am. Chem. Soc.
2012, 134, 20276. (i) Hamilton, J. Y.; Sarlah, D.; Carreira, E. M. J. Am.
Chem. Soc. 2013, 135, 994. (j) Chen, W.; Hartwig, J. F. J. Am. Chem. Soc.
2013, 135, 2068. (k) Liu, W.-B.; Reeves, C. M.; Virgil, S. C.; Stoltz, B. M.
J. Am. Chem. Soc. 2013, 135, 10626.
With Cs2CO3 as the base, different ligands were then ex-
amined. The results are summarized in Table 1. All ligands
led to the complete conversion affording the desired prod-
uct 2a, except for L3 with only 57% conversion (entries
4ꢀ12, Table 1). The reaction with ligand L9 gave the best
enantioselectivity (entry 11, Table 1).11 Interestingly, when
B
Org. Lett., Vol. XX, No. XX, XXXX