Table 1. Identification of the Optimal Reaction Conditions
Scheme 1. Various Synthetic Approaches to Oximes Formation
and Their Common Transformations
uncovering both new catalysis concepts and robust syn-
theticreactions5ꢀ9 by means ofvisible light-enabled photo-
catalysis, exploring its possible implications in designing
and identifying useful scenarios for alternative oxime
synthesis is appealing.
Motivated by this possibility, we set out to explore a set
of optimal reaction conditions conducive for oxime for-
mation by the readily available visible light photosensitizer
Ru(bpy)3Cl2.1 Eventual success emerged from a range of
screenings (Table 1) which proved that the formation of
oximes in synthetically meaningful efficiency depends
critically on the synergy of several factors, most notably
the amine reductive quencher, Lewis acidic additive, and
a No light was employed. b Yield of isolated product. c Only aza-
Henry product (ref 5a).
solvent. Withnitrocompound 1 asthe model substrateand
a 45 W household bulb as the light source, we initially
serendipitously discovered that the desired oxime 2 was
produced in 46% isolated yield (entry 1, Table 1) when the
reaction was performed in MeCN at rt and with 5% mol of
(5) (a) Cai, S. Y.; Zhao, X. Y.; Wang, X. B.; Liu, Q. S.; Li, Z. G.;
Wang, D. Z. Angew. Chem., Int. Ed. 2012, 51, 8050. (b) Kohls, P.;
Jadhav, D.; Pandey, G.; Reiser, O. Org. Lett. 2012, 14, 672. (c) Maity, S.;
Zhu, M. Z.; Shinabery, R. S.; Zheng, N. Angew. Chem., Int. Ed. 2012, 51,
222. (d) Zou, Y.-Q.; Chen, J.-R.; Liu, X.-P.; Lu, L.-Q.; Davis, R. L.;
Jorgensen, K. A.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 784. (e)
Lu, Z.; Yoon, T. P. Angew. Chem., Int. Ed. 2012, 51, 10329. (f) DiRocco,
D. A.; Rovis, T. J. Am. Chem. Soc. 2012, 134, 8094. (g) Ischay, M. A.;
Ament, M. S.; Yoon, T. P. Chem. Sci. 2012, 3, 2807. (h) Zhu, S. Q.; Das,
A.; Bui, L.; Zhou, H. J.; Curran, D. P.; Rueping, M. J. Am. Chem. Soc.
2013, 135, 1823. (i) Deng, G. B.; Wang, Z. Q.; Xia, J. D.; Qian, P. C.;
Song, R. J.; Hu, M.; Gong, L. B.; Li, J. H. Angew. Chem., Int. Ed. 2013,
52, 1535.
€
Ru-catalyst and 3 equiv of amine iPr2NEt (Hunig’s base).
Under otherwise identical conditions, a simple switch of
the reaction solvent MeCN to DMF was found to drama-
tically inhibit the reactivity (entry 2). Control experiments
conducted without either the Ru-photocatalyst (entry 3) or
visiblelight irradiation (entry 4) confirmed unambiguously
that the reproducible formation of 2 demands both. As
the commercial Ru(bpy)3Cl2 photocatalyst was available
in its hexahydrate form, an additional 3 equiv of water
were added to the reaction system (entry 5) as a neutral
additive, which was found to have negatively influenced
the oxime formation. A significant observation was sub-
sequently noted when two reactions with a basic Cs2CO3
(entry 6) or Lewis acidic LiBF4 (entry 7) additive, respec-
tively, were run in parallel; the comparative results re-
vealed the latter to be a far better reaction promoter than
the former (75% vs 20% yield of 2). Thus a number of
Lewis acidic additives, including Sc(OTf)3, La(OTf)3,
Eu(OTf)3, LiClO4, Mg(ClO4)2,10 were screened next at
various loadings and reaction times (entries 8ꢀ13), from
which the substoichiometric Mg(ClO4)2 (0.50 equiv)
clearly stood out for its remarkable capacity to deliver
the product in high isolated yield (82%, entry 13) and
within 12 h at rt. Interestingly, a doubled loading of
Mg(ClO4)2 was found to be detrimental for the product
(6) (a) Lin, S.; Ischay, M. A.; Fry, C. G.; Yoon, T. P. J. Am. Chem.
Soc. 2011, 133, 19350. (b) Dai, C.; Narayanam, J. M. R.; Stephenson,
C. R. J. Nat. Chem. 2011, 3, 140. (c) McNally, A.; Prier, C. K.;
MacMillan, D. W. C. Science 2011, 334, 1114. (d) Zou, Y.-Q.; Lu,
L.-Q.; Fu, L.; Chang, N.-J.; Rong, J.; Chen, J.-R.; Xiao, W.-J. Angew.
Chem., Int. Ed. 2011, 50, 7171. (e) Kalyani, D.; McMurtrey, K. B.;
Neufeldt, S. R.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 18566. (f)
Rueping, M.; Leonori, D.; Poisson, T. Chem. Commun. 2011, 47, 9615.
(g) Nguyen, J. D.; Tucker, J. W.; Konieczynska, M. D.; Stephenson,
C. R. J. J. Am. Chem. Soc. 2011, 133, 4160. (h) Nagib, D. A.; MacMillan,
D. W. C. Nature 2011, 480, 224. (i) Rueping, M.; Zhu, S.; Koenigs, R. M.
ꢀ
Chem. Commun. 2011, 47, 8679. (j) Andrews, R. S.; Becker, J. J.; Gagne,
M. R. Org. Lett. 2011, 13, 2406.
ꢀ
ꢀ
(7) (a) Condie, A. G.; Gonzalez-Gomez, J. C.; Stephenson, C. R. J.
J. Am. Chem. Soc. 2010, 132, 1464. (b) Ischay, M. A.; Lu, Z.; Yoon, T. P.
J. Am. Chem. Soc. 2010, 132, 8572. (c) Andrews, R. S.; Becker, J. J.; M.
ꢀ
R. Gagne, M. R. Angew. Chem., Int. Ed. 2010, 49, 7274. (d) Shih, H. W.;
Vander Wal, M. N.; Grange, R. L.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2010, 132, 13600. (e) Nicewicz, D. A.; MacMillan, D. W. C. Science
2008, 322, 77. (f) Du, J.; Yoon, T. P. J. Am. Chem. Soc. 2009, 131, 14604.
(8) (a) Tucker, J. W.; Nguyen, J. D.; Narayanam, J. M. R.; Krabbe,
S. W.; Stephenson, C. R. J. Chem. Commun. 2010, 46, 4985. (b) Tucker,
J. W.; Stephenson, C. R. J. Org. Lett. 2011, 13, 5468. (c) Wallentin, C. J.;
Nguyen, J. D.; Finkbeiner, P.; Stephenson, C. R. J. J. Am. Chem. Soc.
2012, 134, 8875.
(9) For reductions of nitroalkenes to anilines induced by photocata-
lysis, see: (a) Hirao, T.; Shiori, J.; Okahata, N. Bull. Chem. Soc. Jpn.
2004, 77, 1763. (b) Gazi, S.; Ananthakrishnan, R. Appl. Catal., B 2011,
105, 317. Reductions of azides to amines are also possible; see: (c) Chen,
Y.; Kamlet, A. S.; Steinman, J. B.; Liu, D. R. Nat. Chem. 2011, 3, 146.
(10) (a) Fukuzumi, S.; Okamoto, T. J. Am. Chem. Soc. 1993, 115,
11600. (b) Sibi, M. P.; Asano, Y.; Sausker, J. B. Angew. Chem., Int. Ed.
2001, 40, 1293. (c) Yang, D.; Gu, S.; Yan, Y.; Zhu, N. Y.; Cheung, K. K.
J. Am. Chem. Soc. 2001, 123, 8612.
B
Org. Lett., Vol. XX, No. XX, XXXX