heteroarylboron reagentsare very few, and effective NHCs
forthiskind ofcross-coupling are still desired.10 Herein, we
describe the coupling of heteroaryl chlorides with aryl/
heteroarylboronic acids and esters catalyzed by the
palladium/ether-imidazolium chloride system.
Scheme 1. Synthesis of Ether-Imidazolium Chlorides
The ether-imidazolium chlorides (2b and 2dÀe) were
simply prepared as ligand precursors in two steps from
inexpensive reagents (Scheme 1). The one-pot synthesis of
imidazoles (1b and 1dÀe) was carried out as the first step,
leading to good yields.11 The subsequent benzylation of
imidazoles gave the desired products in high yields. Other
ligand precursors were prepared in the same manner.12
These ether-imidazolium chlorides were crystalline solids
stable enough to handle and store exposed to air.
To evaluate the effects of ether-imidazolium chlorides,
the coupling of 4-chloroanisole (3a) with phenylboronic
acid (4a) using 1 mol % of catalysts (Pd/L = 1/2) formed
in situ from carbene precursors 2aÀi and palladium(II)
acetate was conducted at 80 °C (Table 1, entries 1À9).13
The ether-imidazolium chloride with methyl groups at
the 4- and 5-position led to high catalytic performance
though the coupling with precursor 2a gave 4-methoxy-
biphenyl (5aa) in moderate yield (entries 1 and 2). The
extremely low result was obtained in the case of using the
bulkier precursor bearing the 2,4,6-triisopropylbenzyl group
(entry 3).
Table 1. Effects of Ether-Imidazolium Chlorides in
SuzukiÀMiyaura Couplinga
Whereas the ether-imidazolium chlorides with the phe-
nyl or isopropyl group on the oxygen afforded a 94% yield,
entry
substrate
NHC HCl
Pd
yield (%)b
(8) For examples of effective monodentate NHCs in the coupling
with aryl/heteroaryl chlorides, see: (a) Zhang, C.; Huang, J.; Trudell,
3
1
3a
3a
3a
3a
3a
3a
3a
3a
3a
3b
3b
3b
3b
3b
3b
3b
3b
2a
2b
2c
2d
2e
2f
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
Pd(OAc)2
[Pd(allyl)Cl]2
PdCl2
49
€
M. L.; Nolan, S. P. J. Org. Chem. 1999, 64, 3804–3805. (b) Gstottmayr,
€
C. W. K.; Bohm, V. P. W.; Herdtweck, E.; Grosche, M.; Herrmann,
2
88
W. A. Angew. Chem., Int. Ed. 2002, 41, 1363–1365. (c) Navarro, O.;
Kelly, R. A., III; Nolan, S. P. J. Am. Chem. Soc. 2003, 125, 16194–16195.
(d) Song, C.; Ma, Y.; Chai, Q.; Ma, C.; Jiangb, W.; Andrus, M. B.
3
2
4
94
€
5
94
Tetrahedron 2005, 61, 7438–7446. (e) Ozdemir, I.; Demir, S.; C-etinkaya,
B. Tetrahedron 2005, 61, 9791–9798. (f) Luan, X.; Mariz, R.; Gatti, M.;
Costabile, C.; Poater, A.; Cavallo, L.; Linden, A.; Dorta, R. J. Am.
6
trace
7
2g
2h
2i
0
€
Chem. Soc. 2008, 130, 6848–6858. (g) Wurtz, S.; Glorius, F. Acc. Chem.
8
4
Res. 2008, 41, 1523–1533. (h) Jin, Z.; Guo, S.-X.; Gu, X.-P.; Qiu, L.-L.;
Song, H.-B.; Jian-Xin Fang, J.-X. Adv. Synth. Catal. 2009, 351, 1575–
1585. (i) Wu, L.; Drinkel, E.; Gaggia, F.; Capolicchio, S.; Linden, A.;
Falivene, L.; Cavallo, L.; Dorta, R. Chem.;Eur. J. 2011, 17, 12886–
12890. (j) Valente, C.; C-alimsiz, S.; Hoi, K. H.; Mallik, D.; Sayah, M.;
Organ, M. G. Angew. Chem., Int. Ed. 2012, 51, 3314–3332. (k) Chartoire,
A.; Lesieur, M.; Falivene, L.; Slawin, A. M. Z.; Cavallo, L.; Cazin,
C. S. J.; Nolan, S. P. Chem.;Eur. J. 2012, 18, 4517–4521. (l) Tu, T.; Sun,
Z.; Fang, W.; Xu, M.; Zhou, Y. Org. Lett. 2012, 14, 4250–4253.
(9) For examples of effective bidentate NHCs in the coupling with
aryl/heteroaryl chlorides, see: (a) Zhang, C.; Trudell, M. L. Tetrahedron
Lett. 2000, 41, 595–598. (b) Liao, C.-Y.; Chan, K.-T.; Tu, C.-Y.; Chang,
Y.-W.; Hu, C.-H.; Lee, H. M. Chem.;Eur. J. 2009, 15, 405–417. (c)
Schmidt, A.; Rahimi, A. Chem. Commun. 2010, 2995–2997. (d) Kumar,
M. R.; Park, K.; Lee, S. Adv. Synth. Catal. 2010, 352, 3255–3266.
(10) Examples: (a) O’Brien, C. J.; Kantchev, E. A. B.; Valente, C.;
Hadei, N.; Chass, G. A.; Lough, A.; Hopkinson, A. C.; Organ, M. G.
Chem.;Eur. J. 2006, 12, 4743–4748. (b) Organ, M. G.; C-alimsiz, S.;
Sayah, M.; Hoi, K. H.; Lough, A. J. Angew. Chem., Int. Ed. 2009, 48,
2383–2387. (c) Peh, G.-R.; Kantchev, E. A. B.; Er, J.-C.; Ying, J. Y.
Chem.;Eur. J. 2010, 16, 4010–4017. (d) Liu, T.; Zhao, X.; Shen, Q.; Lu,
L. Tetrahedron 2012, 68, 6535–6547.
9
0
10
11
12
13
14
15
16
17c
2b
2d
2e
2d
2d
2d
2d
2d
3
94(99)d
91
90(98)d
14
6
Pd2(dba)3
Pd(dba)2
Pd(OAc)2
0
4
a Reaction conditions: 3 (1 mmol), 4a (1.5 mmol), 2 (2 mol %), Pd
(1 mol %), Cs2CO3 (2 mmol), dioxane (2 mL), 80 °C, 18 h. b Isolated
yield. c Pd/2d = 1/1 (Pd: 1 mol %). d 90 °C.
the reaction with the precursor bearing the thioether group
hardly proceeded (entries 4À6). The carbene precursors
without an ether group and with a methoxy group at the
para-position did not show beneficial effects (entries 7À9),
(11) The procedure was modified on the basis of Orru’s report:
Gelens, E.; De Kanter, F. J. J.; Schmitz, R. F.; Sliedregt, L. A. J. M.;
Van Steen, B, J.; Kruse, C. G.; Leurs, R.; Groen, M. B.; Orru, R. V. A.
Molecular Diversity 2006, 10, 17–22.
(12) The full details of carbene precursor synthesis were included in
the Supporting Information.
(13) The precatalysts were prepared in situ by heating, and then the
coupling reactions were carried out. See Supporting Information.
(14) The ether group could serve as a hemilabile donor: (a) Slone,
C. S.; Weinberger, D. A.; Mirkin, C. A. Prog. Inorg. Chem. 1999, 48,
233–350. (b) Weng, Z.; Teo, S.; Hor, T. S. A. Acc. Chem. Res. 2007, 40,
676–684. (c) Kwong, F. Y.; Chan, A. S. C. Synlett 2008, 1440–1448.
B
Org. Lett., Vol. XX, No. XX, XXXX