Please do not adjust margins
RSC Advances
Page 4 of 5
DOI: 10.1039/C6RA17546E
COMMUNICATION
Journal Name
methoxyphenyl)-9H-xanthene 1c (0.5 mmol) in aromatics
b
Notes and references
(1.5 mL) as solvent for 17 h under air.
b Isolated yield after flash chromatography based on
c.
c 0.5 mL 1b and 0.5 mL 2b was used.
1
(a) K. D. Sajal, S. Ritesh and P. Gautam, Eur. J. Org. Chem.
2009, 4757; (b) G. Saint-Ruf, H. T. Hieu and J. P. Poupelin,
Naturwissenschaften. 1975, 62, 584; (c) N. P. Buu-Hoi, G.
Saint-Ruf, A. De and H. T. Hieu, Bull. Chim. Ther. 1972, 7, 83;
(d) R. M. Ion, Prog.Catal. 1997, 2, 55; (e) R. M. Ion, D.
OMe
Frackowiak, A. Planner and K. Wiktorowicz, Acta Biochim. Pol.
1998, 45, 833.
Pd(OAc)2/Cu(OTf)2
36h, 150oC
2
(a) A. S. Jennings, S. L. Schwartz, N. J. Balter, D. Gardner and
R. J. Witorsch, Toxicology and Applied Pharmacology. 1990,
103, 549; (b) G. H. Y. Lin and D. J. Brusick, Mutagenesis. 1986,
MeO
OMe
OMe
4a
1b
18d 51%
18c not detected
1
, 253.
Scheme 1 Reaction of 9H-fluorene 4a with anisole 1b
.
3
H. Jung, B. Su, W. Keller, R. Mehta and A. Kinghorn, J. Agric.
Food Chem. 2006, 54, 2077.
4
5
T. Hideo, Jpn. Tokkyo Koho, 1981, JP 56005480.
J. P. Poupelin, G. Saint-Ruf, O. Foussard-Blanpin, G. Narcisse,
G. Uchida-Ernouf and R. Lacroix, Eur. J. Med. Chem. 1978, 13
67.
,
6
7
8
9
D. Shankaranarayan, C. Gopalakrishnan and L. Kameswaran,
Arch Int Pharmacodyn Ther. 1979, 239, 257.
T. Hiroshi, M. Masayuki, F. Tetsuya, S. Mitsuo and H. Tsujiaki,
Nucleic Acids Research. 1989, 17, 8135.
T. Hiroshi, F. Tetsuya, S. Mitsuo, H. Tsujiaki, E. J. William and
Z. Gerald, Tetrahedron Lett. 1988, 29, 577.
(a) H. Tsujiaki, I. Masahide, M. Mitsuo and M. Katsuhiro, Eur.
Pat. Appl. 1994, EP 617046 A1 19940928; (b) O. Tsuneya, T.
Masaki, H. Tsujiaki and I. Masahide, Eur. Pat. Appl. 1994,
EP 624372 A2 19941117.
10 (a) S. M. Menchen, S. C. Benson, J. Y. L. Lam, W. Zhen, D. Sun,
B. B. Rosenblum, S. H. Khan and M. Taing, U. S. Patent. 2003,
US6583168; (b) A. Banerjee and A. K. Mukherjee, Stain
Technol. 1981, 56, 83.
Fig. 3 Plausible mechanism of the reaction.
11 (a) S. K. Das, R. Singh, and G. Panda, Eur. J. Org. Chem. 2009,
4757; (b) R. Singh, and G. Panda, Org. Biomol. Chem. 2010, 8,
1097.
In the process of our experiment, xanthone was isolated in
low yield under the optimal condition (Table 1, entry 7). To
gain some insight of the reaction mechanism we used the
xanthone to run the reaction and product 1c was not
detected.17 Therefore, we speculate that the reaction did not
proceed the intermediate of xanthone. Then a plausible
mechanism which accounts for the palladium-copper
cooperatively catalyzed C(sp3)-C(sp2) coupling reaction is
shown in Figure 3. Firstly, aromatics bearing electron-donating
functional groups and xanthenes can be reacted with the
metal catalyst Cu(OTf)2 and Pd(OAc)2 respectively.18 The
12 (a) X. F. Wu, H. Neumann and M. Beller, Chem. Rev. 2013,
113, 1; (b) A. PintEr, A. Sud, D. Sureshkumar and M.
Klussmann, Angew. Chem. Int. Ed. 2010, 49, 5004; (c) B.
Schweitzer-Chaput, A. Sud, A. PintEr, S. Dehn, P. Schulze and
M. Klussmann, Angew. Chem. Int. Ed. 2013, 52, 13228; (d) A.
PintEr and M. Klussmann, Adv. Synth. Catal. 2012, 354, 701.
(e) J. M. Curto and M. C. Kozlowski, J. Am. Chem. Soc. 2015,
131, 17; (f) X. Chen, C. E. Goodhue and J. Q. Yu, J. Am. Chem.
Soc. 2006, 128, 12634.
13 C. C. C. J. Seechurn, M. O. Kitching, T. J. Colacot and V.
Snieckus, Angew. Chem., Int. Ed. 2012, 51, 5062.
obtained intermediates
A
and
B
proceeded the cross-coupling
, which then translated to
14 (a) K. Semba and Y. Nakao, J. Am. Chem. Soc. 2014, 136, 7567;
(b) C. W. D. Gallop, M. T. Chen and O. Navarro, Org. let. 2014,
16, 3724; (c) K. Semba, K. Ariyama, H. Zheng, R. Kameyama, S.
Sakaki and Y. Nakao, Angew. Chem. Int. Ed. 2016, 55, 6275.
15 (a) G. Evano N., Blanchard and M. Toumi, Chem. Rev. 2008,
108, 3054; (b) F. Monnier and M. Taillefer, Angew. Chem. Int.
Ed. 2008, 47, 3096; (c) S. Matsumura, Y. Maeda, T. Nishimura
and S. Uemura, J. Am. Chem. Soc. 2003, 125, 8862; (d) S. H.
reaction to get the intermediate
C
the final product after the reductive elimination reaction.
In summary, we have developed a novel and efficient
palladium-copper cooperatively catalyzed C(sp3)-C(sp2) C-H
activation and cross-coupling reaction to synthesize 9-aryl-9H-
xanthene and 9,9-diaryl-xanthene derivatives which are very
important to chemical and pharmaceutical industry. The
newly-developed co-catalyst system demonstrated moderate
yield and good selectivity. We will use this protocol to expand
our further research to more aromatics with other functional
groups which might be potentially applicable in the
pharmaceutical and biochemical areas.
Cho, J. Y. Kim, J. Kwak and S. Chang, Chem. Soc. Rev. 2011, 40
5068.
16 (a) S. K. Das, R. Singh and G. Panda, Eur. J. Org. Chem. 2009,
,
4757; (b) R. Singh and G. Panda, Org. Biomol. Chem. 2010, 8,
1097.
17 S. R. Sheng, T. Li, J. W. Jiang, W. He and C. S. Song, Polym Int,
2010, 59, 1014.
18 S. J. Park, J. R. Price and M. H. Todd, J. Org. Chem., 2012, 77
949.
,
This work was financially supported by the National Natural
Science Foundation of China (No. 21402079) and the Shandong
Provincial Natural Science Foundation of China (ZR2015PB004).
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins