10.1002/chem.202102748
Chemistry - A European Journal
COMMUNICATION
Huang, L. Guo, W. Xia, Green Chem. 2021, 23, 2095–2103. x) Q. Wang,
X. Zhang, P. Wang, X. Gao, H. Zhang, A. Lei, Chin. J. Chem. 2021, 39,
143–148.
Stemming from a re-evaluation of N−Ts deprotection, we have
introduced sulfonyl pyrroles as synthetic linchpins for primary
sulfonamide functionalization and the late-stage diversification of
drug molecules. We have demonstrated the versatility of these
reagents through several routes, including photochemical and
electrochemical reduction to sulfinates, and the preparation of
sulfonic acids, sulfones and sulfonamides. These represent early
findings on the chemistry of sulfonyl pyrroles and we hope they
encourage further studies of these unique reagents. In addition,
we have demonstrated a direct mode of sulfonamide activation
that may lead to ideal ways for transforming N-containing
molecules.
[3]
For example, the reports listed in reference 2 do not investigate the Ts
side product. There are scant examples of the N-sulfonyl bond as a site
for functionalization. a) B. Raju, C. Wu, A. Kois, E. Verner, I. Okun, F.
Stravos, M. F. Chan, Bioorg. Med. Chem. Lett. 1996, 6, 2651–2656. b)
D. J. Jeon, D. W. Yu, H. R. Kim, E. K. Ryu, Heterocycles 1998, 48, 155–
159. c) N. Murugesan, Z. Gu, P. D. Stein, S. Bisaha, S. Spergel, R.
Girotra, V. G. Lee, J. Lloyd, R. N. Misra, J. Schmidt, A. Mathur, L. Stratton,
Y. F. Kelly, E. Bird, T. Waldron, E. C.-K. Liu, R. Zhang, H. Lee, R.
Serafino, B. Abboa-Offei, P. Mathers, M. Giancarli, A. A. Seymour, M. L.
Webb, S. Moreland, J. C. Barrish, J. T. Hunt, J. Med. Chem. 1998, 41,
5198–5218. d) N. J. Findlay, S. R. Park, F. Schoenebeck, E. Cahard, S.
Zhou, L. E. A. Berlouis, M. D. Spicer, T. Tuttle, J. A. Murphy, J. Am. Chem.
Soc. 2010, 132, 15462–15464.
[4]
[5]
[6]
[7]
a) K. A. Scott, J. T. Njardarson, Top. Curr. Chem. 2018, 376, 1–34. b)
The First Miracle Drugs: How the Sulfa Drugs Transformed Medicine
(Ed.: J. E. Lesch), Oxford University Press, Oxford, 2006.
Acknowledgements
This work was supported by JSPS KAKENHI Grant Numbers
JP19H00895 and JP21F21039 and by JST CREST Grant
Number JPMJCR19R4, Japan. H.Y. thanks The Asahi Glass
Foundation for financial support. G.J.P.P. is the recipient of a
JSPS Postdoctoral Fellowship for Research in Japan. G.J.P.P
thanks Professor David J. Procter, all the Procter group and Dr.
Marco Simonetti for much support and many helpful discussions.
a) P. S. Fier, K. M. Maloney, J. Am. Chem. Soc. 2019, 141, 1441–1445.
b) P. S. Fier, S. Kim, K. M. Maloney, J. Am. Chem. Soc. 2019, 141,
18416–18420.
a) A. Gómez‐Palomino, J. Cornella, Angew. Chem. Int. Ed. 2019, 58,
18235–18239; Angew. Chem. 2019, 131, 18403–18407. b) M. Pérez‐
Palau, J. Cornella, Eur. J. Org. Chem. 2020, 2020, 2497–2500.
a) R. R. Milburn, V. Snieckus, Angew. Chem. Int. Ed. 2004, 43, 888–891;
Angew. Chem. 2004, 116, 906–909. b) L. Chen, H. Lang, L. Fang, J. Yu,
L. Wang, Eur. J. Org. Chem. 2014, 2014, 6385–6389. c) J. Chen, K.
Zhang, Y. Zhao, S. Pu, Synth. Commun. 2018, 48, 1316–1323. d) J.
Chen, J. Wang, X. Chen, Y. Huang, S. Pu, Synth. Commun. 2019, 49,
836–843. e) G. Meng, T. Guo, T. Ma, J. Zhang, Y. Shen, K. B. Sharpless,
J. Dong, Nature 2019, 574, 86–89.
Keywords: sulfonamide • photoredox • electrochemistry • late-
stage functionalization • deprotection
[1]
a) P. G. M. Wuts in Greene`s Protective Groups in Organic Synthesis,
5th Edition, John Wiley & Sons, New Jersey, 2014, pp. 895-1193. b) P. J.
Kocienski in Protecting Groups, 3rd Edition, Thieme, Stuttgart, 2005, pp.
542-548.
[8]
[9]
Whilst this manuscript was in preparation, a related study was reported.
This procedure required multiple steps and isolation events to activate
the sulfonamide. Y. Luo, H. Ding, J.-S. Zhen, X. Du, X.-H. Xu, H. Yuan,
Y.-H. Li, W.-Y. Qi, B.-Z. Liu, S.-M. Lu, C. Xue, Q. Ding, Chem. Sci. 2021,
12, 9556–9560.
[2]
For N−Ts deprotection of pyrroles and related compounds, see: a) B.
Nyasse, L. Grehn, U. Ragnarsson, Chem. Commun. 1997, 1017–1018.
b) I. Fleming, J. Frackenpohl, H. Ila, J. Chem. Soc. Perkin Trans. 1 1998,
1229–1236. c) G. Sabitha, S. Abraham, B. V. Subba Reddy, J. S. Yadav,
Synlett 1999, 1999, 1745–1746. d) C. M. Haskins, D. W. Knight,
Tetrahedron Lett. 2004, 45, 599–601. e) J. S. Bajwa, G.-P. Chen, K.
Prasad, O. Repič, T. J. Blacklock, Tetrahedron Lett. 2006, 47, 6425–
6427. f) Y. Liu, L. Shen, M. Prashad, J. Tibbatts, O. Repič, T. J. Blacklock,
Org. Process Res. Dev. 2008, 12, 778–780. g) S. P. Patel, D. H. Nadkarni,
S. Murugesan, J. R. King, S. E. Velu, Synlett 2008, 2008, 2864–2868. h)
H. Senboku, K. Nakahara, T. Fukuhara, S. Hara, Tetrahedron Lett. 2010,
51, 435–438. i) S. W. Youn, J. H. Bihn, B. S. Kim, Org. Lett. 2011, 13,
3738–3741. j) S. Yoshida, K. Igawa, K. Tomooka, J. Am. Chem. Soc.
2012, 134, 19358–19361. k) H. S. Farwaha, G. Bucher, J. A. Murphy,
Org. Biomol. Chem. 2013, 11, 8073–8081. l) S. O’Sullivan, E. Doni, T.
Tuttle, J. A. Murphy, Angew. Chem. Int. Ed. 2014, 53, 474–478; Angew.
Chem. 2014, 126, 484–488. m) E. Hasegawa, N. Izumiya, T. Fukuda, K.
Nemoto, H. Iwamoto, S. Takizawa, S. Murata, Tetrahedron 2016, 72,
7805–7812. n) E. Hasegawa, N. Izumiya, T. Miura, T. Ikoma, H. Iwamoto,
S. Takizawa, S. Murata, J. Org. Chem. 2018, 83, 3921–3927. o) P. W.
Antoni, M. M. Hansmann, J. Am. Chem. Soc. 2018, 140, 14823–14835.
p) L. Zhang, L. Jiao, Chem. Sci. 2018, 9, 2711–2722. q) E. Hasegawa,
Y. Nagakura, N. Izumiya, K. Matsumoto, T. Tanaka, T. Miura, T. Ikoma,
H. Iwamoto, K. Wakamatsu, J. Org. Chem. 2018, 83, 10813–10825. r)
Qiang‐Liu, Y.-X. Liu, H.-J. Song, Q.-M. Wang, Adv. Synth. Catal. 2020,
362, 3110–3115. s) W. Sun, X. Chen, Y. Hu, H. Geng, Y. Jiang, Y. Zhou,
W. Zhu, M. Hu, H. Hu, X. Wang, X. Wang, S. Zhang, Y. Hu, Tetrahedron
Lett. 2020, 61, 152442. t) E. Hasegawa, T. Tanaka, N. Izumiya, T. Kiuchi,
Y. Ooe, H. Iwamoto, S. Takizawa, S. Murata, J. Org. Chem. 2020, 85,
4344–4353. u) M. D. Heredia, W. D. Guerra, S. M. Barolo, S. J. Fornasier,
R. A. Rossi, M. E. Budén, J. Org. Chem. 2020, 85, 13481–13494. v) I. A.
MacKenzie, L. Wang, N. P. R. Onuska, O. F. Williams, K. Begam, A. M.
Moran, B. D. Dunietz, D. A. Nicewicz, Nature 2020, 580, 76–80. w) B.
For further details, see the supporting information.
[10] Z. Wang, Compr. Org. Name React. Reagents 2010, 665–668.
[11] M. Abid, L. Teixeira, B. Török, Tetrahedron Lett. 2007, 48, 4047–4050.
[12] A mechanistic discussion is provided in the supporting information.
[13] a) P. J. Sarver, N. B. Bissonnette, D. W. C. MacMillan, J. Am. Chem. Soc.
2021, 143, 9737–9743. b) D. Kaiser, I. Klose, R. Oost, J. Neuhaus, N.
Maulide, Chem. Rev. 2019, 119, 8701–8780. c) A. S. Deeming, E. J.
Emmett, C. S. Richards-Taylor, M. C. Willis, Synthesis 2014, 46, 2701–
2710.
[14] A. T. Davies, J. M. Curto, S. W. Bagley, M. C. Willis, Chem. Sci. 2017, 8,
1233–1237.
[15] K. M. Maloney, J. T. Kuethe, K. Linn, Org. Lett. 2011, 13, 102–105.
[16] a) H. Yue, C. Zhu, M. Rueping, Angew. Chem. Int. Ed. 2018, 57, 1371–
1375; Angew. Chem. 2018, 130, 1385–1389. b) M. J. Cabrera-Afonso,
Z.-P. Lu, C. B. Kelly, S. B. Lang, R. Dykstra, O. Gutierrez, G. A. Molander,
Chem. Sci. 2018, 9, 3186–3191.
[17] G. Li, M. Szostak, Nat. Commun. 2018, 9, 4165.
[18] a) Y. Pang, D. Moser, J. Cornella, Synthesis 2020, 52, 489–503. b) G. Li,
S. Ma, M. Szostak, Trends Chem. 2020, 2, 914–928.
4
This article is protected by copyright. All rights reserved.