E.E. Alberto et al. / Tetrahedron 68 (2012) 10476e10481
10481
Kinetic studies: all the solutions used for these experiments were
prepared in D2O. The progress of the reaction was monitored by 1H
NMR spectroscopy at 298ꢀ0.1 K suppressing the signal corre-
sponding to the H2O/HOD signal. Different stock solutions were
prepared in pH 6.1 phosphate buffer (Na2HPO4, 0.25 M) or pH 4.2
(NaH2PO4 0.5 M) containing 4-pentenoic acid (7, 0.15 M), propionic
acid (0.010 M), and NaBr (0.825 M, 1.65 M or 3.3 M). Serial dilution
of H2O2 was employed to prepare 4.4 M and 2.2 M solutions from
commercially available 8.8 M H2O2. Catalysts 4aec were dissolved
in D2O to produce 0.05 M solutions. One milliliter of the stock so-
lution was transferred to a vial (0.15 mmol of 7 along with the
J¼11.5 Hz, 2H), 3.83 (t, J¼6.5 Hz, 4H), 3.10 (t, J¼6.0 Hz, 4H); 13C NMR
(CDCl3, 100 MHz):
d
¼150.20, 131.84, 117.17, 112.02, 66.65, 49.00.
Acknowledgements
E.E.A. and M.R.D. thank the Office of Naval Research (U.S.A.) for
support of this work (award N0014-09-1-0217). E.E.A. is obliged to
CNPq for a Sandwich PhD Fellowship Grant (award 200334/2009-
ꢀ
3). A.L.B. thanks CNPq (INCT-Catalise) for financial support. Dr.
Dinesh Sukumaran and Bharathwaj Sathyamoorthy (SUNY at Buf-
falo) are acknowledged for their help in the NMR experiments.
corresponding amount of NaBr), followed by the addition of 75
of the stock solution of catalyst 4aec (0.00375 mmol, 2.5 mol %)
and 205 L of the desired H2O2 solution. The mixture was quickly
mL
References and notes
m
transferred to a 5-mm NMR tube and acquisitions were recorded at
300-s intervals with the total time of the experiment being ap-
proximately 90 min. The consumption of 4-pentenoic acid was
measured comparing the changes between the relative integral
values of the internal alkene proton of 4-pentenoic acid
1. (a) Kleemann, A.; Engel, J. In Pharmaceutical Substances, 4th ed.; Thieme: New
York, NY, 2001; (b) Dagani, M. J.; Barda, H. J.; Benya, T. J.; Sanders, D. C. In
Ullmann’s Encyclopedia of Industrial Chemistry: Bromine Compounds; Wiley-VCH:
Weinheim, 2002; (c) De Meijere, A.; Diederich, F. In Metal-catalyzed Cross-
coupling Reactions, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2004.
2. (a) Eissen, M.; Lenoir, D. Chem.dEur. J. 2008, 14, 9830e9841; (b) Podgorsek, A.;
Stavber, S.; Zupan, M.; Iskra, J. Tetrahedron 2009, 65, 4429e4439; (c) Podgorsek,
A.; Zupan, M.; Iskra, J. Angew. Chem., Int. Ed. 2009, 48, 8424e8450 and cited
references.
3. (a) Hori, T.; Sharpless, K. B. J. Org. Chem. 1978, 43, 1689e1697; (b) Reich, H. J.;
Chow, F.; Peake, S. L. Synthesis 1978, 299e301; (c) Brink, G. J.; Fernandes, B. C.
M.; Vliet, M. C. A.; Arends, I. W. C. E.; Sheldon, R. A. J. Chem. Soc., Perkin Trans. 1
2001, 224e228; (d) Mercier, E. A.; Smith, C. D.; Parvez, M.; Back, T. G. J. Org.
Chem. 2012, 77, 3508e3517.
(
d
¼5.8 ppm) and the methylene protons of propionic acid
(d
¼1.1 ppm). The results were plotted following pseudo-first-order
conditions (time in seconds vs ln [4-pentenoic acid]).
4.3. General procedure for bromination of organic substrates
4. Brink, G. J.; Vis, J. M.; Arends, I. W. C. E.; Sheldon, R. A. J. Org. Chem. 2001, 66,
2429e2433.
1,4-Dioxane (5 mL) was added to a mixture of substrate
(1.5 mmol) and NaBr (3.09 g, 30 mmol). Catalyst 4a, 2.5 mol %
(25 mg, 0.0375 mmol) was dissolved in 15 mL of a pH 4.2 phos-
phate solution (NaH2PO4 0.5 M) and added to the reaction mixture.
Then, H2O2 (8.8 M) was added (the number of equivalents of H2O2
is described in Table 3) and the reaction stirred at room tempera-
ture for the amount of time reported in Table 3. The products were
extracted with ethyl acetate (4ꢁ8 mL), the combined organic ex-
tracts were washed with 20 mL of NaHSO3 0.5 M, 20 mL of brine,
dried over MgSO4, and concentrated under vacuum. When re-
quired, purification was performed by column chromatography on
flash silica.
5. (a) Mugesh, G.; Mont, W. W.; Sies, H. Chem. Rev. 2001, 101, 2125e2179; (b)
Malmstrom, J.; Jonsson, M.; Cotgreave, I. A.; Hammarstrom, L.; Sjodin, M.;
Engman, L. J. Am. Chem. Soc. 2001, 123, 3434e3440; (c) Back, T. G.; Moussa, Z. J.
Am. Chem. Soc. 2003, 125, 13455e13460; (d) Back, T. G.; Moussa, Z.; Parvez, M.
Angew. Chem., Int. Ed. 2004, 43 1268e1270; (e) Nogueira, C. W.; Zeni, G.; Rocha,
J. B. T. Chem. Rev. 2004, 104, 6255e6285; (f) Kumar, S.; Johansson, H.; Kanda, T.;
Engman, L.; Muller, T.; Jonsson, M.; Pedulli, G. F.; Petrucci, S.; Valgimigli, L. Org.
Lett. 2008, 10, 4895e4898; (g) Alberto, E. E.; Soares, L. C.; Sudati, J. H.; Borges,
A. C. A.; Rocha, J. B. T.; Braga, A. L. Eur. J. Org. Chem. 2009, 4211e4214; (h) Al-
berto, E. E.; Nascimento, V.; Braga, A. L. J. Braz. Chem. Soc. 2010, 21, 2032e2041;
(i) Kumar, S.; Johansson, H.; Kanda, T.; Engman, L.; Muller, T.; Bergenudd, H.;
Jonsson, M.; Pedulli, G. F.; Amorati, R.; Valgimigli, L. J. Org. Chem. 2010, 75,
716e725.
ꢀ
6. (a) Mlochowski, J.; Brzaszcz, M.; Giurg, M.; Palus, J.; Wojtowicz, H. Eur. J. Org.
Chem. 2003, 4329e4339; (b) Alberto, E. E.; Braga, A. L. In Selenium and Tellurium
Chemistry - From Small Molecules to Biomolecules and Materials; Springer: Ber-
lin, 2011; 251e283.
7. Leonard, K. A.; Zhou, F.; Detty, M. R. Organometallics 1996, 15, 4285e4292.
8. (a) Wang, C.; Tunge, J. A. Chem. Commun. 2004, 2694e2695; (b) Mellegaard, S.
R.; Tunge, J. A. J. Org. Chem. 2004, 69, 8979e8981; (c) Tunge, J. A.; Mellegaard,
S. R. Org. Lett. 2004, 6, 1205e1207; (d) Mellegaard-Waetzig, S. R.; Wang, C.;
Tunge, J. A. Tetrahedron 2006, 62, 7191e7198.
9. (a) Francavilla, C.; Bright, F. V.; Detty, M. R. Org. Lett. 1999, 1, 1043e1046; (b)
Francavilla, C.; Drake, M. D.; Bright, F. V.; Detty, M. R. J. Am. Chem. Soc. 2001, 123,
57e67; (c) Drake, M. D.; Bright, F. V.; Detty, M. R. J. Am. Chem. Soc. 2003, 125,
12558e12566; (d) Drake, M. D.; Bateman, M. A.; Detty, M. R. Organometallics
2003, 22, 4158e4162; (e) Goodman, M. A.; Detty, M. R. Organometallics 2004,
23, 3016e3020; (f) Bennett, S. M.; Tang, Y.; McMaster, D.; Bright, F. V.; Detty, M.
R. J. Org. Chem. 2008, 73, 6849e6852.
10. For recent reviews about the use of organoselenium compounds in a green
context see: (a) Freudendahl, D. M.; Shahzad, S. A.; Wirth, T. Eur. J. Org. Chem.
2009, 1649e1664; (b) Freudendahl, D. M.; Santoro, S.; Shahzad, S. A.; Santi, C.;
Wirth, T. Angew. Chem., Int. Ed. 2009, 48, 8409e8411.
11. (a) You, Y.; Ahsan, K.; Detty, M. R. J. Am. Chem. Soc. 2003, 125, 4918e4927; (b)
Goodman, M. A.; Detty, M. R. Synlett 2006, 1100e1104; (c) Braga, A. L.; Alberto,
E. E.; Soares, L. C.; Rocha, J. B. T.; Sudati, J. H.; Roos, D. H. Org. Biomol. Chem.
2009, 7, 43e45; (d) Nascimento, V.; Alberto, E. E.; Tondo, D. W.; Dambrowski,
D.; Detty, M. R.; Nome, F.; Braga, A. L. J. Am. Chem. Soc. 2012, 134, 138e141.
12. (a) Iwaoka, M.; Tomoda, S. Phosphorus, Sulfur Silicon Relat. Elem. 1992, 67,
125e130; (b) Iwaoka, M.; Katsuda, T.; Komatsu, H.; Tomoda, S. J. Org. Chem.
2005, 70, 321e327.
13. Handy, S. T.; Okello, M. J. Org. Chem. 2005, 70, 1915e1918.
14. Espenson, J. H.; Pestovsky, O.; Huston, P.; Staudt, S. J. Am. Chem. Soc. 1994, 116,
2869e2877.
15. (a) Everett, R. R.; Butler, A. Inorg. Chem. 1989, 28, 393e395; (b) Everett, R. R.;
Kanofskyen, J. R.; Butler, A. J. Biol. Chem. 1990, 265, 4908e4914.
16. Harjani, J. R.; Farrell, J.; Garcia, M. T.; Singer, R. D.; Scammells, P. J. Green Chem.
2009, 11, 821e829.
4.3.1. 5-(Bromomethyl)dihydrofuran-2(3H)-one (9)9f (Table 3, entry
1). Yield 82%; 1H NMR (CDCl3, 500 MHz):
d
¼4.78e4.73 (m, 1H),
3.60e3.53 (m, 2H), 2.70e2.54 (m, 2H), 2.49e2.42 (m, 1H),
2.17e2.09 (m, 1H); 13C NMR (CDCl3, 75 MHz):
d¼176.10, 77.77,
34.07, 28.27, 26.07.
4.3.2. 5,6-Dibromohexanoic acid (14) (Table 3, entry 2). Yield 68%;
1H NMR (CDCl3, 500 MHz):
d
¼11.68 (br, 1H), 4.19e4.15 (m, 1H),
3.88e3.85 (m, 1H), 3.63 (t, J¼10.0 Hz, 1H), 2.48e2.40 (m, 2H),
2.26e2.20 (m, 1H), 2.00e1.92 (m, 1H), 1.89e1.73 (m, 2H); 13C NMR
(CDCl3, 75 MHz):
d
¼179.40, 51.91, 35.90, 35.23, 33.12, 22.03; HRMS
m/z calcd for [C6H9Br2O]þ 254.9015, found 254.9015.
4.3.3. 5-Ethylfuran-2(5H)-one (16)17 (Table 3, entry 3). Yield 79%;
1H NMR (CDCl3, 500 MHz):
d
¼7.47 (d, J¼5.5 Hz, 1H), 6.12 (d,
J¼5.5 Hz, 1H), 5.02 (t, J¼5.5 Hz, 1H), 1.88e1.83 (m, 1H), 1.77e1.71
(m, 1H), 1.02 (t, J¼7.5 Hz, 3H); 13C NMR (CDCl3, 75 MHz):
¼173.15,
d
156.08, 121.64, 84.25, 26.22, 8.94.
4.3.4. 2-Bromo-1,3,5-trimethoxybenzene (18)9f (Table 3, entry
4). Yield 94%; 1H NMR (CDCl3, 500 MHz):
6H), 3.81 (s, 3H); 13C NMR (CDCl3, 75 MHz):
91.59, 56.24, 55.42.
d
¼6.16 (s, 2H), 3.87 (s,
d
¼160.36,157.34, 91.83,
4.3.5. N-(4-Bromophenyl)morpholine (20)9f (Table 3, entry 5). Yield
87%; 1H NMR (CDCl3, 400 MHz):
¼7.34 (d, J¼9.0 Hz, 2H), 6.75 (d,
17. Fujita, K.; Hashimoto, S.; Kanakubo, M.; Oishia, A.; Taguchi, Y. Green Chem. 2003,
5, 549e553.
d