Safaei-Ghomi J., Nazemzadeh S. H. and Shahbazi-Alavi H.
[11] A. J. Waddon, E. B. Coughlin, Chem. Mater. 2003, 15, 4555–4561.
[12] D. Gnanasekaran, K. Madhavan, B. Reddy, J. Sci. Ind. Res. 2009, 68,
437–464.
[13] R. H. Baney, M. Itoh, A. Sakakibara, T. Suzuki, Chem. Rev. 1995, 95,
1409–1430.
[14] G. Li, L. Wang, H. Ni, C. U. Pittman, Jr., J. Inorg. Organometal. Polym.
2001, 11, 123–154.
[15] A. O. Oseni, P. E. Butler, A. M. Seifalian, J. Tissue Eng. Regen. Med. 2015, 9,
27–38.
under optimized conditions. Upon completion of the reaction, the
catalyst was washed with MeOH and acetone, dried in an oven at
65 °C for 70 min and used directly with new substrates under the
same conditions. The results (Fig. 9) show that the catalyst can be
reused several times (yields of 93 to 92%). The magnetite core–shell
composite was investigated using SEM before use and after reuse
of five times (see the supporting information). The SEM images of
these nanoparticles before and after the reaction show identical
shapes. Therefore, it can be concluded that the morphology of
the nanoparticles remains unchanged after reaction and SiO2/
APTPOSS is stable on the surface of iron oxide nanoparticles.
[16] P. P. Pescarmona, J. C. van der Waal, T. Maschmeyer, Chem. Eur. J. 2004,
10, 1657–1665.
[17] D. B. Cordes, P. D. Lickiss, F. Rataboul, Chem. Rev. 2010, 110, 2081–2173.
[18] S. Wu, W. Guo, F. Teraishi, J. Pang, K. Kaluarachchi, L. Zhang, J. Davis,
F. Dong, B. Yan, B. Fang, Med. Chem. 2006, 2, 597–605.
[19] M. L. Barreca, A. Chimirri, L. De Luca, A.-M. Monforte, P. Monforte,
A. Rao, M. Zappalà, J. Balzarini, E. De Clercq, C. Pannecouque, Bioorg.
Med. Chem. Lett. 2001, 11, 1793–1796.
Conclusions
[20] R. K. Rawal, R. Tripathi, S. Katti, C. Pannecouque, E. De Clercq, Bioorg.
We demonstrated the preparation of novel core–shell composite
nanoparticles composed of iron oxide MNPs (Fe3O4) and APTPOSS
for synthesis of 1,3-thiazolidin-4-ones.
Med. Chem. Lett. 2007, 15, 1725–1731.
[21] M. L. Barreca, J. Balzarini, A. Chimirri, E. D. Clercq, L. D. Luca, H. D. Höltje,
M. Höltje, A. M. Monforte, P. Monforte, C. Pannecouque, J. Med. Chem.
2002, 45, 5410–5413.
This protocol is compatible with various aldehydes under
solvent-free conditions. Also, the resultant catalyst combines many
advantages such as long-term stability, high catalytic activity for
this reaction, ease of separation of catalyst using an external
magnetic field, short reaction times and simple work-up. Also, the
catalyst could be easily recovered and reused several times without
significant loss of catalytic activity.
[22] I. Vazzana, E. Terranova, F. Mattioli, F. Sparatore, ARKIVOC 2004, 5,
364–374.
[23] P. Vicini, A. Geronikaki, K. Anastasia, M. Incerti, F. Zani, Bioorg. Med.
Chem. 2006, 14, 3859–3864.
[24] P. Vicini, A. Geronikaki, M. Incerti, F. Zani, J. Dearden, M. Hewitt, Bioorg.
Med. Chem. 2008, 16, 3714–3724.
[25] M. V. Diurno, O. Mazzoni, G. Correale, I. G. Monterrey, A. Calignano,
G. La Rana, A. Bolognese, Il Farmaco 1999, 54, 579–583.
[26] K. Omar, A. Geronikaki, P. Zoumpoulakis, C. Camoutsis, M. Soković,
A. Ćirić, J. Glamočlija, Bioorg. Med. Chem. 2010, 18, 426–432.
[27] U. R. Pratap, D. V. Jawale, M. R. Bhosle, R. A. Mane, Tetrahedron Lett.
2011, 52, 1689–1691.
[28] N. Foroughifar, S. Ebrahimi, Chin. Chem. Lett. 2013, 24, 389–391.
[29] A. K. Yadav, M. Kumar, T. Yadav, R. Jain, Tetrahedron Lett. 2009, 50,
5031–5034.
Acknowledgements
The authors acknowledge a reviewer who provided helpful insights.
The authors are grateful to the University of Kashan for supporting
this work under grant no. 159196/XXI.
[30] D. Kumar, M. Sonawane, B. Pujala, V. K. Jain, A. K. Chakraborti, Green
Chem. 2013, 15, 2872–2884.
[31] J. Safaei-Ghomi, M. Navvab, H. Shahbazi-Alavi, Ultrason. Sonochem.
References
2016, 31, 102–106.
[32] S. M. Sadeghzadeh, F. Daneshfar, J. Mol. Liq. 2014, 199, 440–444.
[33] J. Safaei-Ghomi, B. Khojastehbakht-Koopaei, H. Shahbazi-Alavi, RSC Adv.
2014, 4, 46106–46113.
[34] J. Safaei-Ghomi, A. Javidan, A. Ziarati, H. Shahbazi-Alavi, J. Nanopart.
Res. 2015, 17, 1–12.
[35] J. Safaei-Ghomi, S. Zahedi, Tetrahedron Lett. 2016, 10, 1071–1073.
[36] W. Xie, N. Ma, Energy Fuel 2009, 23, 1347–1353.
[37] U. Dittmar, B. J. Hendan, U. Flörke, H. C. Marsmann, J. Organomet. Chem.
1995, 489, 185–194.
[1] J. Safaei-Ghomi, S. Zahedi, Appl. Organometal. Chem. 2015, 29, 566–571.
[2] S. Sobhani, M. Honarmand, Appl. Catal. A 2013, 467, 456–462.
[3] M. B. Gawande, P. S. Branco, R. S. Varma, Chem. Soc. Rev. 2013, 42,
3371–3393.
[4] B. Karimi, F. Mansouri, H. M. Mirzaei, Chem. Cat. Chem. 2015, 7, 1736–1789.
[5] R. N. Baig, R. S. Varma, Chem. Commun. 2013, 49, 752–770.
[6] M. Kuzminska, N. Carlier, R. Backov, E. M. Gaigneaux, Appl. Catal. A.
2015, 505, 200–212.
[7] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst,
R. N. Muller, Chem. Rev. 2008, 108, 2064–2110.
[8] J. Davarpanah, A. R. Kiasat, S. Noorizadeh, M. Ghahremani, J. Mol. Catal.
A 2013, 376, 78–89.
[9] J. Tan, S. Feng, Dalton Trans. 2013, 42, 16482–16485.
[10] D. Heyl, E. Rikowski, R. C. Hoffmann, J. J. Schneider, W. D. Fessner, Chem.
Eur. J. 2010, 16, 5544–5548.
Supporting information
Additional supporting information may be found in the online
version of this article at the publisher’s web site.
wileyonlinelibrary.com/journal/aoc
Copyright © 2016 John Wiley & Sons, Ltd.
Appl. Organometal. Chem. (2016)