ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
TEMPO-Mediated Aliphatic CꢀH
Oxidation with Oximes and Hydrazones
Xu Zhu, Yi-Feng Wang, Wei Ren, Feng-Lian Zhang, and Shunsuke Chiba*
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 637371, Singapore
Received April 17, 2013
ABSTRACT
A method for aliphatic CꢀH bond oxidation of oximes and hydrazones mediated by 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) has been
developed, which enables the concise assembly of substituted isoxazole and pyrazole skeletons.
The sp3-hybridized carbonꢀhydrogen bonds (aliphatic
CꢀH bonds) are ubiquitous in organic molecules, while
most of them especially without activation by the adjacent
functional groups (e.g., carbonyl groups) are inert even
under harsh reaction conditions. As direct functionalization
of such nonreactive aliphatic CꢀH bonds can potentially
result in the atom- and step-economical assembly of
functionalized chemical structures, development of chemo-
and regioselective CꢀH oxidation strategies is one of the
most challenging topics in synthetic chemistry.1
especially in CꢀH oxygenation2 and CꢀH amination,3
which have actually revolutionized the retrosynthetic tac-
tics of biologically active complex molecules.4 On the other
hand, our reaction design for the CꢀH oxidation was
motivated by the potential of free radical reactions that
could be operated under transition-metal-free conditions.
A representative example of aliphatic CꢀH oxidation with
€
the free-radical strategy is the HofmannꢀLofflerꢀFreytag
reaction (Scheme 1A).5 The process is initiated by thermal
or photochemical decomposition of protonated N-halo-
amines to afford nitrogen-centered radicals (N-radicals),
which immediately induce a 1,5-H radical shift to provide
carbon-centered radicals (C-radicals). Further chlorina-
tion of the C-radicals followed by a base-mediated intra-
molecular substitution reaction results in the CꢀN bond.
Transition-metal catalysts have played a significant role
in state-of-the-art aliphatic CꢀH oxidation processes,
(1) For recent reviews on CꢀH oxidation, see: (a) White, M. C.
Science 2012, 335, 807. (b) Davies, H. M. L.; Du Bois, J.; Yu, J.-Q. Chem.
Soc. Rev. 2011, 40, 1855. (c) Newhouse, T.; Baran, P. S. Angew. Chem.,
Int. Ed. 2011, 50, 3362. (d) Lyons, T. W.; Sanford, M. S. Chem. Rev.
2010, 110, 1147 and references therein.
€
However, the HofmannꢀLofflerꢀFreytag reaction tends
to afford poor product yields while being difficult to
control, mainly due to the instability of the radical pre-
cursors (N-haloamines) and inherent high chemical reac-
tivity of the resulting aminyl radicals. Moreover, several
steps (i.e., preparation of N-haloamines, radical CꢀH
halogenation, and base-mediated substitution reaction
for the CꢀN bond construction) are required to obtain
CꢀH amination products. Based on these backgrounds,
(2) For recent selected reports on CꢀH oxygenation, see: (a) Wang,
Y.-F.; Chen, H.; Zhu, X.; Chiba, S. J. Am. Chem. Soc. 2012, 134, 11980.
(b) Simmons, E. M.; Hartwig, J. F. Nature 2012, 483, 70. (c) McNeill, E.;
Du Bois, J. Chem. Sci. 2012, 3, 1810. (d) Zhang, S.-Y.; He, G.; Zhao, Y.;
Wright, K.; Nack, W. A.; Chen, G. J. Am. Chem. Soc. 2012, 134, 7313.
€
(e) Prat, I.; Mathieson, J. S.; Guell, M.; Ribas, X.; Luis, J. M.; Cronin,
L.; Costas, M. Nat. Chem. 2011, 3, 788. (f) Bigi, M. A.; Reed, S. A.;
White, M. C. Nat. Chem. 2011, 3, 216. (g) Gormisky, P. E.; White, M. C.
J. Am. Chem. Soc. 2011, 133, 12584. (h) Chen, M. S.; White, M. C.
Science 2010, 327, 566. (i) McNeil, E.; Du Bois, J. J. Am. Chem. Soc.
2010, 132, 10202. (j) Zhang, Y.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2009,
131, 14654.
(4) For recent reviews, see: (a) Yamaguchi, J.; Yamaguchi, A. D.;
Itami, K. Angew. Chem., Int. Ed. 2012, 51, 8960. (b) Chen, D. Y.-K.;
Youn, S. W. Chem.;Eur. J. 2012, 18, 9452.
(3) For recent reviews on CꢀH amination, see: (a) Roizen, J. L.;
Harvey, M. E.; Du Bois, J. Acc. Chem. Rec. 2012, 45, 911. (b) Du Bois, J.
Org. Process Res. Dev. 2011, 15, 758. (c) Collet, F.; Lescot, C.; Dauban,
P. Chem. Soc. Rev. 2011, 40, 1926. (d) Zalatan, D. N.; Du Bois, J. Top.
Curr. Chem. 2010, 292, 347. (e) Collet, F.; Dodd, R. H.; Dauban, P.
(5) (a) Titouania, S. L.; Lavergne, J.-P.; Viallefonta, P.; Jacquierb, E.
Tetrahedron 1980, 36, 2961. (b) Corey, E. J.; Hertler, W. R. J. Am. Chem.
ꢀ
€
Chem. Commun. 2009, 5061. (f) Dıaz-Requejo, M. M.; Perez, P. J. Chem.
Soc. 1960, 82, 1657. (c) Loffler, K.; Freytag, C. Ber. 1909, 42, 3427. (d)
Rev. 2008, 108, 3379.
Hofmann, A. W. Ber. 1883, 16, 558.
r
10.1021/ol4014969
XXXX American Chemical Society