Mendeleev Commun., 2013, 23, 142–144
the Russian Foundation for Basic Research (grant no. 12-03-31726)
and the Council for grants of the President of the Russian Federa-
tion (grant no. MK-1511.2013.3).
Online Supplementary Materials
Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.mencom.2013.05.007.
2c
2e
References
Figure 1 Molecular structures of bipyridines 2c and 2e. Hydrogen atoms
in 2e are omitted for clarity.
1 (a) P. J. Pijper, H. van der Goot, H. Timmerman and W. Th. Nauta, Eur. J.
Med. Chem., 1984, 19, 393; (b) P. Zajdel, K. Marciniec, A. Mas´lankiewicz,
G. Satała, B. Duszyn´ska,A. J. Bojarski,A. Partyka, M. Jastrze˛bska-Wie˛sek,
D. Wróbel, A. Wesołowska and M. Pawłowski, Bioorg. Med. Chem.,
2012, 20, 1545; (c) P. J. Burke, L. Chun Wong, T. C. Jenkins, R. J. Knox
and S. P. Stanforth, Bioorg. Med. Chem. Lett., 2011, 21, 7447.
2 (a) The Chemistry of Heterocyclic Compounds: Isoquinolines, eds.
G. M. Coppola and H. F. Schuster, Wiley, NewYork, 1981, vol. 38, part 3;
(b) M. Chrzanowska and M. D. Rozwadowska, Chem. Rev., 2004, 104,
3341; (c)Y. Kashiwada, A. Aoshima,Y. Ikeshiro,Y. P. Chen, H. Furukawa,
M. Itoigawa, T. Fujioka, K. Mihashi, L. M. Cosentino, S. L. Morris-
Natschke and K. H. Lee, Bioorg. Med. Chem., 2005, 13, 443.
3 F. Dzierszinski, A. Coppin, M. Mortuaire, E. Dewailly, C. Slomianny,
J. C. Ameisen, F. DeBels and S. Tomavo, Antimicrob. Agents Chemother.,
2002, 46, 3197.
aromatic solvents was more successful. In a typical case refluxing
of compounds 2 and 3 equiv. DDQ in o-xylene afforded iso-
quinolines 1 in yields up to 68%.¶
It should be mentioned that although the synthesis of com-
pound 1d was reported previously by R. Ziessel and co-authors,26
their spectral data differed from those observed by us. In particular,
in the 13C NMR spectrum of compound 1d obtained by us, the
resonances of all 18 aromatic carbons are revealed versus 15
carbon atoms reported by R. Ziessel and co-authors. In addition,
its 1H NMR spectrum contained the characteristic resonance for
C4H proton of isoquinoline system as one proton singlet at 8.15
ppm and several multiplets for other protons versus broad
multiplet reported for this compound.26
Thus, we have developed an efficient and novel synthetic route
to aryl-substituted 1-(2-pyridyl)isoquinolines via the correspond-
ing tetrahydroisoquinolines readily accessed from 1,2,4-triazines
by the aza-Diels–Alder reaction. This approach allows one to
obtain isoquinolines with a fairly wide variation of substituents
in core.
4 A. Graulich, S. Dilly, A. Farce, J. Scuvée-Moreau, O. Waroux, C. Lamy,
P. Chavatte, V. Seutin and J. F. Liégeois, J. Med. Chem., 2007, 50,
5070.
5 Y. G. Gao, R. Zong, A. Campbell, N. S. Kula, R. J. Baldessarini and
J. L. Neumeyer, J. Med. Chem., 1988, 31, 1392.
6 (a) K. Bhadra and G. S. Kumar, Med. Res. Rev., 2011, 31, 821; (b) U. Pässler
,
and H.-J. Knölker, Alkaloids: Chemistry and Biology, ed. H.-J. Knölker,
Elsevier, Amsterdam, 2011, vol. 70, pp. 79–151; (c) W.-H. Chueh and
J.-Y. Lin, Food Chem., 2012, 132, 252.
7 Y. Mikata, K. Kawata, S. Iwatsukia and H. Konno, Inorg. Chem., 2012,
51, 1859.
The work was supported by the Russian Ministry of Education
and Science (state contract nos. 14.740.11.1020 and 14.A18.21.0817),
8 (a) C. W. Lim, O. Tissot, A. Mattison, M. W. Hooper, J. M. Brown, A. R.
Cowley, D. I. Hulmes and A. J. Blacker, Org. Process Res. Dev., 2003,
7, 379; (b) B.A. Sweetman, H. Muller-Bunz and P. J. Guiry, Tetrahedron
Lett., 2005, 46, 4643.
9 (a) S.-J. Liu, Q. Zhao, R.-F. Chen, Y. Deng, Q.-L. Fan, F.-Y. Li, L.-H.
Wang, C.-H. Huang and W. Huang, Chem. Eur. J., 2006, 12, 4351;
(b) A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani,
S. Igawa, T. Moriyama, S. Miura, T. Takiguchi, S. Okada, M. Hoshino
and K. Ueno, J. Am. Chem. Soc., 2009, 125, 12971; (c) J. Y. Lee, Y. J.
Choi, J. H. Kwon and H. K. Chung, U.S. Patent 20050112401A1, 2005
(Chem. Abstr., 2005, 142, 490492).
§
Crystal data for 2c. Brown crystals (0.33×0.18×0.03 mm), triclinic,
–
space group P1, at 150(2) K: a = 8.6964(7), b = 13.8034(11) and c =
= 15.4544(19) Å, a = 112.724(11)°, b = 99.166(10)°, g = 103.960(7)°,
V = 1593.2(3) Å3, Z = 4, dcalc = 1.523 g cm–3. 9057 reflections were
collected (2.67° < q < 28.29°), 7639 independent (Rint = 0.0261) and 4429
with I > 2s(I). Analytical correction for absorption was applied (m =
= 2.581 mm–1).27 The final refinement parameters were: R1 = 0.0408,
wR2 = 0.0874 for reflections with I > 2s(I); R1 = 0.0839, wR2 = 0.0919
for all reflections; GOF = 1.005.
10 (a) A. Bischler and B. Napieralski, Ber. Dtsch. Chem. Ges., 1893, 26,
1903; (b) X. Xu, S. Guo, Q. Dang, J. Chen and X. Bai, J. Comb.
Chem., 2007, 9, 773; (c) S. W. Youn, J. Org. Chem., 2006, 71, 2521;
(d) C. Pomeranz, Monatsh. Chem., 1893, 14, 116.
Crystal data for 2e. Colourless crystals (0.25×0.20×0.15 mm), mono-
clinic, P21/c, at 295(2) K: a = 9.9141(12), b = 10.5438(7) and c =
3
=
18.7699(17)Å, b = 99.358(9)°, V = 1935.9(3)Å3, Z = 4, dcalc = 1.244 g cm–
.
11 (a) K. M. Allan, B. D. Hong and B. M. Stoltz, Org. Biomol. Chem.,
2009, 7, 4960; (b) D. M. Knapp, E. P. Gillis and M. D. Burke, J. Am.
Chem. Soc., 2009, 131, 6961; (c) G. Verniest, X. Wang, N. De Kimpe and
A. Padwa, J. Org. Chem., 2010, 75, 424; (d) M. P. Arend, L. A. Flippin,
V. Guenzler-Pukall, W.-B. Ho, E. D. Turtle and X. Du, US Patent
254215A1, 2004 (Chem. Abstr., 2004, 142, 56195).
12 (a) K. Kobayashi, K. Hayashi, K. Miyamoto, O. Morikawa and H. Konishi,
Synthesis, 2006, 17, 2934; (b) I. S. Kovalev, V. L. Rusinov and O. N.
Chupakhin, Chem. Heterocycl. Compd., 2009, 45, 176 (Khim. Geterotsikl.
Soedin., 2009, 223); (c) R. F. Knott and J. G. Breckenridge, Can. J.
Chem., 1954, 32, 512.
13 (a) K. V. Rao and J. W. Beach, J. Med. Chem., 1991, 34, 1871; (b) H. Irving
and A. Hampton, J. Chem. Soc., 1955, 430.
14 (a) D. Fischer, H. Tomeba, N. K. Pahadi, N. T. Patil and Y. Yamamoto,
Angew. Chem., 2007, 119, 4848; (b) N. Guimond and K. Fagnou, J. Am.
Chem. Soc., 2009, 131, 12050; (c) T. Fukutani, N. Umeda, K. Hirano,
T. Satoh and M. Miura, Chem. Commun., 2009, 5141.
15 A. M. d’A. Rocha Gonsalves, T. M. V. D. Pinho e Melo and T. L. Gilchrist,
Tetrahedron, 1992, 48, 6821; (b)R. Dhar,W. Huehnermann,T. Kaempchen,
W. Overheu and G. Seitz, Chem. Ber., 1983, 116, 97.
16 R. P. Korivi and C.-H. Cheng, Org. Lett., 2005, 7, 5179.
17 K. R. Roesch and R. C. Larock, J. Org. Chem., 1998, 63, 5306.
18 (a) I. S. Kovalev, D. S. Kopchuk, G. V. Zyryanov, P. A. Slepukhin, V. L.
Rusinov and O. N. Chupakhin, Chem. Heterocycl. Compd., 2012, 48,
536 (Khim. Geterotsikl. Soedin., 2012, 576); (b) D. S. Kopchuk, G. V.
8513 reflections were collected (2.777° < q < 28.28°), 4594 independent
(Rint = 0.0309) and 1750 with I > 2s(I). Analytical correction for absorp-
tion was not applied (m = 0.073 mm–1).27 The final refinement parameters
were: R1 = 0.0429, wR2 = 0.079 for reflections with I > 2s(I); R1 = 0.1312,
wR2 = 0.0852 for all reflections; GOF = 1.002.
The structures were solved by direct methods and refined by full-matrix
least-squares procedure on F2 with the SHELXTL-9728 program in the
anisotropic approximation for non-hydrogen atoms. The positions of the
H atoms were calculated geometrically and included in the refinement
with the ‘riding model’.
CCDC 913339 and 913340 contain the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The Cambridge
For details, see ‘Notice to Authors’, Mendeleev Commun., Issue 1, 2013.
¶
Preparation of isoquinolines 1 (general procedure). A mixture of the
corresponding bipyridine 2 (0.5 mmol), DDQ (114 mg, 0.5 mmol) and
o-xylene (40 ml) was refluxed for 3 h. Additional portion of DDQ (114 mg,
0.5 mmol) was added and the reaction mixture was refluxed for additional
3 h. Then the final portion of DDQ (114 mg, 0.5 mmol) was added and
the resulting mixture was refluxed for 4 h. The solvent was removed under
reduced pressure, the residue was purified by column chromatography
(neutral Al2O3, chloroform).
For characteristics of compounds 1a–e, see Online Supplementary
Materials.
– 143 –