Page 3 of 5
Journal Name
Green Chemistry
COMMUNICATION
operations: solvent evaporation, extraction and one column
purification.
Acknowledgements
The synthetic utility of compounds 6 is exemplified by oxidation and
reduction to tetrasubstituted pyrroles and proline esters (Scheme
2).13
DOI: 10.1039/C4GC02191F
Integrate per la Salute (Project PONa3_00138), University of Salerno, for
600 MHz NMR instrumental time. We thank Dr. P. Iannece for assistance
with MS spectra analyses, Dr. P. Oliva with NMR spectroscopy and G.
Balistreri for experimental support.
Ph
CN
Ph
CN
DDQ
t-BuO2C
Ph
Ph
N
H
9
toluene/AcOEt 2:1
70 °C, 23 h
N
H
6a
t-BuO2C
Notes and references
78%
a Dipartimento di Chimica e Biologia, Università di Salerno, Via Giovanni
Paolo II, 84084, Fisciano, Italy. Fax:0039-089-969603; E-mail:
Ph
CN
Ph
CN
NaBH3CN
+
Electronic Supplementary Information (ESI) available: Experimental
procedures, characterization data and copies of NMR spectra for all new
compounds, computational details and predicted 1H-NMR chemical
shifts. See DOI: 10.1039/c000000x/
Ph
Ph
AcOH/CH2Cl2 1:1
0 °C, 2 h
N
N
H
t
-BuO C
t-BuO2C
2
H
11
10
74%, 10/11 70:30
Scheme 2 Derivatization of trans‐2‐pyrrolines to pyrroles and pyrrolidines.
1
For reviews, see: (a) E. Fattorusso and O. Taglialatela-Scafati,
Modern Alkaloids: Structure, Isolation, Synthesis and Biology Wiley-
VCH: Weinheim, 2008; (b) F. Bellina and R. Rossi, Tetrahedron
2006, 62, 7213. For selected examples, see: (c) C. Marti and E. M.
Carreira, J. Am. Chem. Soc., 2005, 127, 11505.
The oxidation of compound 6a with 2,3-dichloro-5,6-dicyano-1,4-
benzoquinone (DDQ), performed in toluene/AcOEt mixture at 70
°C, afforded pyrrole 9 in 78% yield. The reduction of 2-pyrroline 6a
was carried out using NaBH3CN in AcOH/CH2Cl2 medium at 0 °C.14
A mixture of proline esters 10 and 11 was isolated in 74% yield with
70:30 dr ratio.15 We have theoretically studied the reaction
mechanism and in agreement with indole reduction,13,16 the
protonation of the 4-position of compound 6a is the most plausible
event. The observed dr ratio can be traced back to the different free
energies of the two iminium ions I and II. According to DFT
computations, iminium ion I, giving rise to compound 10, is
predicted to be more stable by 1.5 kcal/mol than II, leading to
compound 11 (Fig. 2).
2
3
C. B. Cui, H. Kakeya and H. Osada, J. Antibiot. 1996, 49, 832.
(a) H. M. Bates, W. Kuenzig and W. B. Watson, Cancer Res., 1969,
29, 2195; (b) L. H. Hurley, L. Petrusek, Nature, 1979, 282, 529.
I. V. Magedov, G. Lucchetti, N. M. Evdokimov, M. Manpadi, W. F.
A. Steelant, S. Van slambrouck, P. Tongwa, M. Y. Antipin and A.
Kornienko Bioorg. Med. Chem. Lett. 2008, 18, 1392.
4
5
(a) Comprehensive Heterocyclic Chemistry
Pergamon Press: Oxford, 1996; Vol. 2; (b) T. J. Donohoe and R. E.
Thomas, Chem. Rec. 2007, , 180; (c) I. Coldham and R. Hufton,
; Bird, C. W., Ed.;
The selective reduction of iminium ions I and II, to diastereoisomers
10 and 11 respectively, might be explained via coordination of
NaBH3CN by the ester group followed by hydride attack onto the
Re-face.17
7
Chem. Rev., 2005, 105, 2765; (d) D. O’Hagan, Nat. Prod. Rep., 2000,
17, 435.
6
Fore selected examples, see: (a) T. J. Donohoe and D. House, J. Org.
Chem., 2002, 67, 5015; (b) L.-G. Meng, P. Cai, Q. Guo and S. Xue,
J. Org. Chem., 2008, 73, 8491; (c) J. U. Rhee and M. J. Krische, Org.
Lett., 2005,
7, 2493; (d) D. X. Zeng and Y. Chen, Synlett, 2006, 490;
(e) H. Ohno, Y. Kadoh, N. Fujii and T. Tanaka, Org. Lett., 2006,
8
,
947; (f) R. Castarlenas, C. Vovard, C. Fischmeister and P. H.
Dixneuf, J. Am. Chem. Soc., 2006, 128, 4079; (g) M. Sai and S.
Matsubara, Org. Lett., 2011, 13, 4676; (h) A. Desmarchelier, V.
Coeffard, X. Moreau and C. Greck, Chem. Eur. J., 2012, 18, 13222;
(j) S. Senthil K. Boominathan, W.-P. Hu, G. C. Senadi and J.-J.
Wang, Adv. Synth. Catal., 2013, 355, 3570.
Fig. 2 Protonated adducts of 6a and their predicted relative Gibbs free energies
(G, kcal/mol).
Conclusions
7
For selected examples, see: (a) T. Junjun, R. Zhou, H. Sun, H. Song
In summary, we developed a simple one-pot approach to novel
and Z. He, J. Org. Chem., 2011
,
76, 2374; (b) M. Sampath, P.-Y. B.
, 1988; (c) X. Yu, G. Zhou and
N
-unprotected-tetrasubstituted trans-2-pyrrolines from trans-2-
aroyl-3-arylacrylonitriles and glycine imine esters exploiting a
Michael addition/deprotection/cyclization/tautomerization
Lee and T.-P. Loh, Chem. Sci., 2011,
2
J. Zhang, Chem. Commun., 2012, 48, 4002; (d) C.-R. Liu, B.-H. Zhu,
J.-C. Zheng, X.-L. Sun, Z. Xie and Y. Tang, Chem. Commun., 2011,
47, 1342; (e) E. Li, P. Jia, L. Liang and Y. Huang, ACS Catal., 2014,
sequence. The functionalised trans-2-pyrrolines have been
obtained in good yield and complete control of the
diastereoselectivity. Notably, a one-pot sequence to trans-2-
pyrrolines can be conveniently applied starting directly from
4
, 600; (f) L.-Q. Lu, J.-J. Zhang, F. Li, Y. Cheng, J. An, J.-R. Chen,
and W.-J. Xiao, Angew. Chem. Int. Ed., 2010, 49, 4495.
8
For selected examples, see; (a) S. S. Kinderman, J. H. Van
Maarseveen, H. E. Schoemaker, H.; Hiemstra and F. P. J. T. Rutjes,
commercially available aldehydes and -cyanoketones. trans-2-
Pyrrolines proved to be of synthetic utility to access pyrroles
and proline ester derivatives. Further studies aimed to enlarge
the scope of the reaction and develop an asymmetric version are
currently underway.
Org. Lett., 2001, 3, 2045; (b) J. Fan, L. Gao and Z. Wang, Chem.
Commun. 2009, 5021; (c) D. Monge, K. L. Jensen, P .T. Franke, L.
Lykke, and K. A. Jørgensen, Chem. Eur. J., 2010, 16, 9478; (d) L. A.
Polindara-García and L. D. Miranda, Org. Lett., 2012, 14, 5408; (e)
This journal is © The Royal Society of Chemistry 2012
J. Name., 2012, 00, 1‐3 | 3