Journal of the American Chemical Society
Communication
Education, Culture, Sports, Science and Technology of Japan, a
Sasakawa Scientific Research Grant (15-107) from The Japan
Science Society, a Kitasato University Research Grant for Young
Researchers, and the U.S. National Science Foundation.
REFERENCES
■
(1) (a) Morishita, H.; Ito, M.; Hayashi, N.; Nonogaki, S. J. Photopolym.
Sci. Technol. 1994, 7, 59. (b) Platz, M. S. Photochem. Photobiol. 1997, 65,
193 and references cited therein.
(2) (a) Borden, W. T.; Gritsan, N. P.; Hadad, C. M.; Karney, W. L.;
Kemnitz, C. R.; Platz, M. S. Acc. Chem. Res. 2000, 33, 765. (b) Platz, M.
S.; Gritsan, N. P. Chem. Rev. 2006, 106, 3844.
(3) Tsao, M.-L.; Platz, M. S. J. Am. Chem. Soc. 2003, 125, 12014.
(4) Chapman, O. L.; LeRoux, J.-P. J. Am. Chem. Soc. 1978, 100, 282.
(5) Hayes, J. C.; Sheridan, R. S. J. Am. Chem. Soc. 1990, 112, 5879.
(6) Morawietz, J.; Sander, W. J. Org. Chem. 1996, 61, 4351.
(7) Carra, C.; Nussbaum, R.; Bally, T. ChemPhysChem 2006, 7, 1268.
(8) Grote, D.; Sander, W. J. Org. Chem. 2009, 74, 7370.
(9) Pritchina, E. A.; Gritsan, N. P.; Bally, T. Phys. Chem. Chem. Phys.
2006, 8, 719.
(10) The geometry optimizations, energy calculations, and calculations
of vibrational frequencies and intensities were performed using DFT at
the restricted or unrestricted B3LYP level with the 6-31G(d) basis set.
The energies include zero-point energy scaled by 0.9806. The DFT
calculations were carried out using Gaussian 03. See: Frisch, M. J.;
Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman,
J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.;
Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi,
M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,
T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.;
Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.;
Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.;
Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.;
Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain,
M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.;
Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.;
Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.;
Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng,
C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M.; Johnson, B.; Chen,
W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision A.1;
Gaussian, Inc.: Pittsburgh, PA, 2003.
Figure 4. IRC calculations at the B3LYP/6-31G(d) level for the
reactions of benzazirine 4-b to give ketenimine 3-b (red) and
benzazirine 8-b to give ketenimine 7-b (blue). Comparisons of the
geometries of the reactants (green circle) and the products having the
same energies as the reactants along the reaction pathways (purple
circles) are shown in section S-9 in the SI.
the previously reported results17a also supports the conclusion
that the ring expansion of 8 to 7 at cryogenic temperatures
proceeds via carbon tunneling. As mentioned above, in the case
of the reaction of methoxy-substituted 4 to give 3, no evidence
for tunneling was obtained. This difference might be interpreted
in terms of the calculated activation barrier and tunneling
distance, which were found to be 6.9 kcal mol−1 and 0.43 Å,
respectively.
In this communication, we have described the direct
observation of 2H-type benzazirines and details of their
reactivity. In the case of methoxy substitution, the most stable
benzazirine conformer, 4-b, was observed on the basis of a clear-
cut IR spectrum, and the photoconversions to ketenimine 3-a
and triplet nitrene 2 were monitored. By contrast, methylthio-
substituted benzazirine 8 afforded ketenimine 7 even in the dark
at 10 K. The measured rate constant was 1057 times greater than
the rate constant would have been if the system had to pass over
the computed barrier of 3.4 kcal mol−1 and showed little
temperature dependence. On the basis of these results, we
conclud that the ring expansion of 8 to give 7 proceeds via heavy-
atom (carbon) tunneling.
(11) Hu, M.; Li, J.; Yao, S. Q. Org. Lett. 2008, 10, 5529.
(12) Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502.
(13) Matrix Isolation Spectroscopy; Barnes, A. J., Orville-Thomas, W. J.,
́
Muller, A., Gaufres, R., Eds.; D. Reidel: Dordrecht, The Netherlands,
̈
1981; Chapter 23, pp 531−549.
(14) This activation barrier was calculated to be 3.4 kcal mol−1 at the
MP2/6-31+G(d,p) level and 4.8 kcal mol−1 at the CCSD(T)/6-
311+G(d,p) level using the MP2/6-31+G(d,p)-optimized geometries
(Figure S18).
(15) (a) Sander, W.; Bucher, G.; Reichel, F.; Cremer, D. J. Am. Chem.
Soc. 1991, 113, 5311. (b) McMahon, R. J.; Chapman, O. L. J. Am. Chem.
Soc. 1987, 109, 683. According to the above papers, in glassy matrixes
with multiple sites, the concentration of a reactant [A] normally
depends on t1/2. In this study, x = 0.50−0.57 was used for [A] = [A]0
exp[−(kt)x].
ASSOCIATED CONTENT
* Supporting Information
Methods and additional results. This material is available free of
■
S
(16) McMahon, R. J. Science 2003, 299, 833−834.
(17) (a) Zuev, P. S.; Sheridan, R. S.; Albu, T. V.; Truhlar, D. G.; Hrovat,
D. A.; Borden, W. T. Science 2003, 299, 867. (b) Moss, R. A.; Sauers, R.
R.; Sheridan, R. S.; Tian, J.; Zuev, P. S. J. Am. Chem. Soc. 2004, 126,
10196.
AUTHOR INFORMATION
Corresponding Author
■
(18) (a) Ley, D.; Gerbig, D.; Schreiner, P. R. Chem. Sci. 2013, 4, 677.
(b) Ley, D.; Gerbig, D.; Wagner, J. P.; Reisenauer, H. P.; Schreiner, P. R.
J. Am. Chem. Soc. 2011, 133, 13614. (c) Schreiner, P. R.; Reisenauer, H.
Notes
The authors declare no competing financial interest.
P.; Pickard, F. C., IV; Simmonett, A. C.; Allen, W. D.; Mat
́
yus, E.;
ACKNOWLEDGMENTS
We gratefully acknowledge financial support through a Grant-in-
Aid for Scientific Research (15750040) from the Ministry of
■
Csaszar, A. G. Nature 2008, 453, 906−909.
́
́
10249
dx.doi.org/10.1021/ja404172s | J. Am. Chem. Soc. 2013, 135, 10246−10249